NOT MY WORDS TAKEN FROM A SOURCE!
(x^2) <64 => (x^2) -64 < 64-64 => (x^2) - 64 < 0 64= 8^2 so (x^2) - (8^2) < 0 To solve the inequality we first find the roots (values of x that make (x^2) - (8^2) = 0 ) Note that if we can express (x^2) - (y^2) as (x-y)* (x+y) You can work backwards and verify this is true. so let's set (x^2) - (8^2) equal to zero to find the roots: (x^2) - (8^2) = 0 => (x-8)*(x+8) = 0 if x-8 = 0 => x=8 and if x+8 = 0 => x=-8 So x= +/-8 are the roots of x^2) - (8^2)Now you need to pick any x values less than -8 (the smaller root) , one x value between -8 and +8 (the two roots), and one x value greater than 8 (the greater root) and see if the sign is positive or negative. 1) Let's pick -10 (which is smaller than -8). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive
2) Let's pick 0 (which is greater than -8, larger than 8). If x=0, then (x^2) - (8^2) = 0-64 = -64 <0 so it is negative3) Let's pick +10 (which is greater than 10). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive Since we are interested in (x^2) - 64 < 0, then x should be between -8 and positive 8. So -8<x<8 Note: If you choose any number outside this range for x, and square it it will be greater than 64 and so it is not valid.
Hope this helped!
:)
She spent four hours. because a weekend is two days. Saturday and sunday. 2X2=4
Your answer is c hope i helped
Answer:
I don’t know lol
Step-by-step explanation:
Solution: We are given:
ACT scores follow normal distribution with 
SAT scores follow normal distribution with 
Now, let's find the z score corresponding to Joe's SAT score 1351.




Therefore, Joe's SAT score is 1.56 standard deviations above the mean.
Now, we have find the Joe's ACT score, which will be 1.56 standard deviations above the mean.
Therefore, we have:






Therefore, Joe's equivalent ACT score to SAT score 1351 is 28.4