Step-by-step explanation:
measure of exterior angle = sum of 2 non adjacent angles
4X = 90 + X
3X = go
X=30
exterior angle = 30x 4 =120
If the triangle has a angle of 90°, you can solved this exercise by applying the Pythagorean Theorem, which is:
h²=a²+b²
h=√(a²+b²)
h: It is the hypotenuse
(The opposite side of the right angle and the longest side of the triangle).
a and b: They are the legs
(The sides that form the right angle).
The result of h=√(a²+b²), should be 17.1 (The longest side given in the problem). So, let's substitute the values of the legs into the Pythagorean equation:
h=√(a²+b²)
h=√((9.2)²+(14.5)²)
h=17.1
Therefore, the answer is:
Yes, the given measures can be the lengths of the sides of a triangle.
C.<span>She made a poor decision if the property value does not
increase. Renting the townhome would be cheaper over the 5 year period.
</span>
Answer:
3/2
Step-by-step explanation:
slope=rise/run=30/20=3/2
Answer:
y = -3x -4
Step-by-step explanation:
A perpendicular line has a slope that is the negative reciprocal of that of the given line. When the equation starts out in standard form, a line with negative reciprocal slope can be written by swapping the x- and y-coefficients and negating one of them.
The given x- and y-coefficients have the ratio 1:-3, so we can use the coefficients 3 and 1 for our purpose.
The usual process of making the line go through a given point can be used. That is, we can translate the line from the origin to the desired point by subtracting the point coordinates from x and y. Then we have ...
3(x+3) +(y-5) = 0
__
This is "an" equation. It is in no particularly recognizable form. It can be rearranged to the form y = mx + b:
3x +9 +y -5 = 0 . . . . . eliminate parentheses
y = -3x -4 . . . . . subtract terms that are not "y"