Answer:
It is the sum of the fixed costs and variable costs.
Hope this helps!
The Plain Meaning Rule.
The plain meaning rule states that when the language is unambiguous and clear, you must use the actual language of the contract and not any outside evidence when determining how the dispute is resolved.
Nouvelle cuisine
Hope it helps
Pls mark as brainlist
Answer:
The minimum cost will be "$214085".
Explanation:
![D = 1700 units \\\\S = \$ 50 \\\\H= 20%\\](https://tex.z-dn.net/?f=D%20%3D%201700%20units%20%5C%5C%5C%5CS%20%3D%20%20%5C%24%2050%20%5C%5C%5C%5CH%3D%20%2020%25%5C%5C)
i) When quantity = 1-1500, price = $ 12.50 , and holding price is $12.50 * 20 %= $2.50.
ii) When quantity = 1501 -10,000, price = $ 12.45 , and holding price is $12.45 * 20 %= $2.49.
iii) When quantity = 10,0001- and more, price = $ 12.40 , and holding price is $12.40 * 20 %= $2.48.
![EOQ= \sqrt{\frac{2DS}{H}} \\\\EOQ1= \sqrt{\frac{2\times 17000\times 50}{2.50}} \\\\EOQ1=824.62 \ \ \ or \ \ \ 825\\](https://tex.z-dn.net/?f=EOQ%3D%20%5Csqrt%7B%5Cfrac%7B2DS%7D%7BH%7D%7D%20%5C%5C%5C%5CEOQ1%3D%20%5Csqrt%7B%5Cfrac%7B2%5Ctimes%2017000%5Ctimes%2050%7D%7B2.50%7D%7D%20%5C%5C%5C%5CEOQ1%3D824.62%20%5C%20%5C%20%5C%20or%20%5C%20%5C%20%5C%20825%5C%5C)
![EOQ2= \sqrt{\frac{2\times 17000\times 50}{2.49}} \\\\EOQ1=826.2T \ \ \ or \ \ \ 826\\](https://tex.z-dn.net/?f=EOQ2%3D%20%5Csqrt%7B%5Cfrac%7B2%5Ctimes%2017000%5Ctimes%2050%7D%7B2.49%7D%7D%20%5C%5C%5C%5CEOQ1%3D826.2T%20%5C%20%5C%20%5C%20or%20%5C%20%5C%20%5C%20826%5C%5C)
![EOQ3= \sqrt{\frac{2\times 17000\times 50}{2.48}} \\\\EOQ3=827.93 \ \ \ or \ \ \ 828\\](https://tex.z-dn.net/?f=EOQ3%3D%20%5Csqrt%7B%5Cfrac%7B2%5Ctimes%2017000%5Ctimes%2050%7D%7B2.48%7D%7D%20%5C%5C%5C%5CEOQ3%3D827.93%20%5C%20%5C%20%5C%20or%20%5C%20%5C%20%5C%20828%5C%5C)
know we should calculate the total cost of EOQ1 and break ever points (1501 to 10,000)units
![total \ cost = odering \ cost + holding \ cost + \ Annual \ product \ cost\\\\total_c = \frac{D}{Q} \times S + \frac{Q}{2} \times H + (p \times D) \\\\T_c = \frac{17000}{825} \times 50+ \frac{825}{2} \times 2.50 + (12.50 \times 17000)\\\\T_c = 1030 .30 +1031.25+212500\\\\T_c =$ 214561.55\\\\](https://tex.z-dn.net/?f=total%20%5C%20cost%20%3D%20odering%20%5C%20cost%20%2B%20holding%20%5C%20cost%20%2B%20%5C%20Annual%20%5C%20product%20%5C%20cost%5C%5C%5C%5Ctotal_c%20%20%3D%20%5Cfrac%7BD%7D%7BQ%7D%20%5Ctimes%20S%20%2B%20%20%5Cfrac%7BQ%7D%7B2%7D%20%5Ctimes%20H%20%2B%20%28p%20%5Ctimes%20D%29%20%5C%5C%5C%5CT_c%20%20%3D%20%5Cfrac%7B17000%7D%7B825%7D%20%5Ctimes%2050%2B%20%20%5Cfrac%7B825%7D%7B2%7D%20%5Ctimes%202.50%20%2B%20%2812.50%20%5Ctimes%2017000%29%5C%5C%5C%5CT_c%20%3D%201030%20.30%20%2B1031.25%2B212500%5C%5C%5C%5CT_c%20%3D%24%20214561.55%5C%5C%5C%5C)
![T_c = \frac{17000}{1501} \times 50+ \frac{1501}{2} \times 2.49 + (12.45 \times 17000)\\\\T_c = 566.28 +1868.74+211650\\\\T_c =$ 214085.02 \ \ \ or \ \ \ $ 214085\\\\](https://tex.z-dn.net/?f=T_c%20%20%3D%20%5Cfrac%7B17000%7D%7B1501%7D%20%5Ctimes%2050%2B%20%20%5Cfrac%7B1501%7D%7B2%7D%20%5Ctimes%202.49%20%2B%20%2812.45%20%5Ctimes%2017000%29%5C%5C%5C%5CT_c%20%3D%20566.28%20%2B1868.74%2B211650%5C%5C%5C%5CT_c%20%3D%24%20214085.02%20%5C%20%5C%20%5C%20or%20%5C%20%5C%20%5C%20%20%24%20214085%5C%5C%5C%5C)
![T_c = \frac{17000}{10001} \times 50+ \frac{10001}{2} \times 2.48 + (12.40 \times 17000)\\\\T_c = 84.99+ 12401.24+210800\\\\T_c =$ 223286.23 \\](https://tex.z-dn.net/?f=T_c%20%20%3D%20%5Cfrac%7B17000%7D%7B10001%7D%20%5Ctimes%2050%2B%20%20%5Cfrac%7B10001%7D%7B2%7D%20%5Ctimes%202.48%20%2B%20%2812.40%20%5Ctimes%2017000%29%5C%5C%5C%5CT_c%20%3D%2084.99%2B%2012401.24%2B210800%5C%5C%5C%5CT_c%20%3D%24%20223286.23%20%5C%5C)
The total cost is less then 15001. So, optimal order quantity is 1501, that's why cost is = $214085.
Your answer is B, <span>If approved by the NSF, it will have a mark to indicate that endorsement.</span>