Answer:
{x,y} = {2,7}
Step-by-step explanation:
sorry if i got it wrong
The percentage that the store has taken off would be 30%.
Check the picture below on the left-side.
we know the central angle of the "empty" area is 120°, however the legs coming from the center of the circle, namely the radius, are always 6, therefore the legs stemming from the 120° angle, are both 6, making that triangle an isosceles.
now, using the "inscribed angle" theorem, check the picture on the right-side, we know that the inscribed angle there, in red, is 30°, that means the intercepted arc is twice as much, thus 60°, and since arcs get their angle measurement from the central angle they're in, the central angle making up that arc is also 60°, as in the picture.
so, the shaded area is really just the area of that circle's "sector" with 60°, PLUS the area of the circle's "segment" with 120°.

![\bf \textit{area of a segment of a circle}\\\\ A_y=\cfrac{r^2}{2}\left[\cfrac{\pi \theta }{180}~-~sin(\theta ) \right] \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ r=6\\ \theta =120 \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20segment%20of%20a%20circle%7D%5C%5C%5C%5C%0AA_y%3D%5Ccfrac%7Br%5E2%7D%7B2%7D%5Cleft%5B%5Ccfrac%7B%5Cpi%20%5Ctheta%20%7D%7B180%7D~-~sin%28%5Ctheta%20%29%20%20%5Cright%5D%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0A%5Ctheta%20%3Dangle~in%5C%5C%0A%5Cqquad%20degrees%5C%5C%0A------%5C%5C%0Ar%3D6%5C%5C%0A%5Ctheta%20%3D120%0A%5Cend%7Bcases%7D)
Answer:
$711.23
Step-by-step explanation:
We assume the entire closing cost went to reducing the principal of the loan. Then the amount borrowed was $147,192.
<h3>Monthly payment</h3>
The amortization formula tells you the monthly payment.
A = P(r/12)/(1 -(1 +r/12)^(-12t))
P is the principal, r is the annual rate, and t is the number of years.
The monthly payment is ...
A = $147,192(0.041/12)/(1 -(1 +0.041/12)^-360) ≈ $711.23
Jeff's monthly payment is $711.23.
Answer:
D.3.5
Step-by-step explanation:
4x+2y=10(given)
2x+y=5
y=5-2x-----(1)
y=2x-1------(2)(given)
Since the left side of the equations are the the same,
5-2x=2x-1
4x=6
x=1.5
Sub x=1.5 into eq(1),
y = 5-2(1.5) = 5-3 = 2
so, x+y = 1.5+2 = 3.5