1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
3 years ago
6

A pedigree chart can show a trait that is:

Biology
1 answer:
Illusion [34]3 years ago
3 0
It is a dominant and that the allele for nontasting id recessive

You might be interested in
Which type of parenting does each example describe
otez555 [7]
Strong, naive, perfect balance of strong and naive.
5 0
3 years ago
Read 2 more answers
The increase of carbon dioxide in the atmosphere has had which effect on the earths climate?
a_sh-v [17]

Answer: A. Average rainfall has decreased

Explanation:

I might be wrong. sorry if i'm wrong

8 0
3 years ago
In your experiment, you found the following offspring only:Tall green: 626 offspring.Tall yellow: 313 offspring.Short green: 309
Karo-lina-s [1.5K]

Complete question:

1. You found a new species of garden pea and have decided to repeat Mendel’s experiments. You have obtained two true-breeding pea plants that are tall (T) with yellow pods (g), and short (t) with green pods (G), respectively. Capital letters indicate dominant traits.

a. What is the genotype and phenotype of the F1 generation? (2p)

b. You allowed self-fertilization in F1 generation and obtained F2 generation. Using Punnett square to obtain the phenotypes, genotypes and their respective ratios. (4p)  

2. If you obtained 1248 offspring in the F2 generation in Question 1, calculate how many offspring of each phenotypic class you would expect to have. (4p)

3. When you finish questions 1 and 2, under what assumption/hypothesis did you perform your analysis/calculation? Is there an alternative assumption/hypothesis, which may result in a different conclusion? If yes, what is the alternative assumption/hypothesis and what kind of offspring and in what numbers do you expect to obtain? (4p)    

4. You only need to answer A or B to get this 6p. Please indicate which question you are answering. In your experiment, you found the following offspring only: Tall green: 626 offspring. Tall yellow: 313 offspring. Short green: 309 offspring.  

A: If you stay with your original hypothesis/assumption, test it using chi2 test and analyze the result (whether you want to reject the hypothesis and why).

B: If you believe that the alternative hypothesis fits better with your data, test it using chi2 test and analyze the result (whether you want to accept the hypothesis and why).

Answer:

1) a. 100% of the progeny will be dihybrid, TtGg, exhibiting the phenotype    

       Tall plants with green pods.

   b.  F2 Gentotype:

  • 1/16 TTGG
  • 2/16 TTGg
  • 1/16 TTgg
  • 2/16 TtGG
  • 4/16 TtGg
  • 2/16 Ttgg
  • 1/16 ttGG
  • 2/16 ttGg
  • 1/6 ttgg

      F2 Phenotype:

  • 9/16 Tall plants with green pods (T-G-)
  • 3/16 Tall plants with yellow pods (T-gg)
  • 3/16 Short plants with green pods (ttG-)
  • 1/16 Short plants with yellow pods (ttgg)

Phenotypic ratio → 9:3:3:1

2)  T-G- → 702 individuals

     T-gg → 234 individuals

     ttG- → 234 individuals

     ttgg → 78 individuals

3)

  • Null Hypothesis: The population is under Hardy-Weinberg equilibrium. The alleles of this population assort independently.
  • Alternative Hypothesis: The population is not in equilibrium. Alleles do not assort independently.

4) a. There is enough evidence to <u>reject the null hypothesis</u>, meaning that the difference between the observed number of individuals and the expected ones is statistically significant. The population is not under equilibrium H-W. Alleles do not assort independently.  

Explanation:

1) 1st Cross: True-breeding tall (T) with yellow pods (g) pea plant with a short (t) with green pods (G) plant

  • Tall and Green pods are the dominant traits,
  • Short and yellow pods are recessive traits.

Parentals)         TTgg         x         ttGG

Gametes) Tg, Tg, Tg, Tg          tG, tG, tG, tG

F1) 100% of the progeny will be dihybrid, TtGg, exhibiting the phenotype    

    Tall plants with green pods.

2nd Cross: F1 self-fertilization

Parentals)  TtGg     x     TtGg

Gametes) TG, Tg, tG, tg

                TG, Tg, tG, tg

Punnett square)    TG         Tg           tG          tg

                 TG      TTGG     TTGg      TtGG      TtGg

                 Tg       TTGg      TTgg      TtGg      Ttgg

                 tG        TtGG      TtGg       ttGG       ttGg

                  tg        TtGg       Ttgg       ttGg       ttgg

F2) Gentotype:

  • 1/16 TTGG
  • 2/16 TTGg
  • 1/16 TTgg
  • 2/16 TtGG
  • 4/16 TtGg
  • 2/16 Ttgg
  • 1/16 ttGG
  • 2/16 ttGg
  • 1/6 ttgg

      Phenotype:

  • 9/16 Tall plants with green pods (T-G-)
  • 3/16 Tall plants with yellow pods (T-gg)
  • 3/16 Short plants with green pods (ttG-)
  • 1/16 Short plants with yellow pods (ttgg)

Phenotypic ratio → 9:3:3:1

2) The total number of individuals in the F2 is 1248.

16 ----------------- 1248 individuals  --------------- 100% of the progeny

9 T-G- ----------- X = 702 individuals-------------X = 56.25%

3 T-gg ----------- X = 234 individuals ----------- X = 18.75%

3 ttG- ------------- X = 234 individuals ---------- X = 18.75%

1 ttgg ------------- X = 78 individuals ------------ X = 6.25%

3)

  • Hypothesis: The population is under Hardy-Weinberg equilibrium. The alleles of this population assort independently.
  • Alternative Hypothesis: The population is not in equilibrium. Alleles do not assort independently

4)    F2 composed of:

  • Tall green: 626 offspring.
  • Tall yellow: 313 offspring.
  • Short green: 309 offspring.  

                       Tall/Green        Tall/Yellow         Short/Green       Short/Yellow

Observed              626                  313                        309                        0

Expected               702                  234                       234                       78

(Obs-Exp)²/Exp     8.23                  26.7                        24                        78

X² = Σ(Obs-Exp)²/Exp = 8.23 + 23.7 + 24 + 78 = 136.93 ≅ 137

Freedom degrees = genotypes - number of alleles = 9 - 4 = 5

Significance level, 5% = 0.05

Table value/ Critical value = 11.07

X² = 137

X² > Critica value

137 > 11.07

There is enough evidence to <u>reject the null hypothesis</u>, meaning that the difference between the observed number of individuals and the expected ones is statistically significant. The population is not under equilibrium H-W. Alleles do not assort independently.    

5 0
3 years ago
Puberty is defined as ________.select one:a. the production of hormones in the reproductive glands stimulated by the pituitary g
podryga [215]

Puberty is defined as the physical changes that occur in the body as sexual development is stimulated by hormonal changes. Through puberty, a child's body undergoes the process maturity into that of an adult, who is capable of sexual reproductive functions.

3 0
3 years ago
The nurse can assess potential victims of domestic violence by asking which question?
mafiozo [28]
<span>b) "It looks like someone has hurt you. Tell me about it."  


i also have aids. just putting that out there</span>
5 0
3 years ago
Other questions:
  • 1. Scientific theory<br> What is the definition of this answer ?
    13·1 answer
  • Which of these individuals is likely to be most successful in an evolutionary sense?
    6·1 answer
  • Which is the relationship between animals and plants in the carbon cycle? <br>​
    9·1 answer
  • A point mutation that changes a codon specifying an amino acid into a stop codon is called a
    10·1 answer
  • HEEEEELP MEEEEEE PLZZZZZZZZZ 100+ points and will mark as brainiest if answers are right
    9·2 answers
  • Which refers to swelling as a result of inflammation?
    15·1 answer
  • Black hair is dominant to red hair two black cocker spaniels have 12 puppies 9 black and 3 red what is the genotype of each pare
    6·2 answers
  • What is the most significant difference in current weather forecasting methods compared to what was done in the past?
    10·2 answers
  • What simple machines have been used on pyramid? What advantages do they give?
    11·1 answer
  • B2 Cell division
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!