1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
4 years ago
10

Can someone please answer this question please answer it correctly and please show work please help me I need it

Mathematics
2 answers:
astraxan [27]4 years ago
6 0

Answer:

D

Step-by-step explanation:

−4−(−7)

=−4−(−7)

=−4+7

=3

Ivanshal [37]4 years ago
3 0

Answer:

D

Step-by-step explanation:

Because -(-7)=+7 and we start at -4, we would move 4 units left, then 7 units right.

You might be interested in
Lmc and gfc of 3,5 and 6
Sholpan [36]

Answer:

Lcm is 30 and gcf is 1

Step-by-step explanation:

Trust me

6 0
3 years ago
Read 2 more answers
A farmer feeds her four horses 64 bales of hay each week. How many bales of hay would the farmer need in order to feed six horse
jekas [21]

Answer:

96 bales

Step-by-step explanation:

\frac{64}{4} = \frac{x}{6}

You must multiply 6 by 64, which is 384.

Then you divide that by 4, which is 96.

Therefore, the answer is 96.

Also, I lined up the bales in the same row and horses in the same row, so this way can help. It can also help if it's in the same column though, but I hope this helped you!

5 0
3 years ago
Read 2 more answers
In a class of pupils, 7 play the flute and
Gre4nikov [31]

Answer:

aassass

Step-by-step explanation:

aassav

aadke

ddwvme

8 0
3 years ago
This problem asks for Taylor polynomials forf(x) = ln(1 +x) centered at= 0. Show Your work in an organized way.(a) Find the 4th,
stich3 [128]

Answer:

a) The 4th degree , 5th degree and sixth degree polynomials

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4}

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5}

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

b)The nth degree Taylor polynomial for f(x) centered at x = 0, in expanded form.

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

Step-by-step explanation:

Given the polynomial function f(x) = log(1+x) …...(1) centered at x=0

      f(x) = log(1+x) ……(1)

using formula \frac{d}{dx} logx =\frac{1}{x}

Differentiating Equation(1) with respective to 'x' we get

f^{l} (x) = \frac{1}{1+x} (\frac{d}{dx}(1+x)

f^{l} (x) = \frac{1}{1+x} (1)  ….(2)

At x= 0

f^{l} (0) = \frac{1}{1+0} (1)= 1

using formula \frac{d}{dx} x^{n-1}  =nx^{n-1}

Again Differentiating Equation(2) with respective to 'x' we get

f^{l} (x) = \frac{-1}{(1+x)^2} (\frac{d}{dx}((1+x))

f^{ll} (x) = \frac{-1}{(1+x)^2} (1)    ….(3)

At x=0

f^{ll} (0) = \frac{-1}{(1+0)^2} (1)= -1

Again Differentiating Equation(3) with respective to 'x' we get

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (\frac{d}{dx}((1+x))

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (1)=  \frac{(-1)^2 (2)!}{(1+x)^3} ….(4)

At x=0

f^{lll} (0) = \frac{(-1)(-2)}{(1+0)^3} (1)

f^{lll} (0) = 2

Again Differentiating Equation(4) with respective to 'x' we get

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (\frac{d}{dx}((1+x))

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4} ....(5)

f^{lV} (0) = \frac{(2(-3))}{(1+0)^4}

f^{lV} (0) = -6

Again Differentiating Equation(5) with respective to 'x' we get

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} (\frac{d}{dx}((1+x))

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5} .....(6)

At x=0

f^{V} (x) = 24

Again Differentiating Equation(6) with respective to 'x' we get

f^{V1} (x) = \frac{(2(-3)(-4)(-5))}{(1+x)^6} (\frac{d}{dx}((1+x))

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

and so on...

The nth term is

f^{n} (x) =  = \frac{(-1)^{n-1} (n-1)!}{(1+x)^n}

Step :-2

Taylors theorem expansion of f(x) is

f(x) = f(a) + \frac{x}{1!} f^{l}(x) +\frac{(x-a)^2}{2!}f^{ll}(x)+\frac{(x-a)^3}{3!}f^{lll}(x)+\frac{(x-a)^4}{4!}f^{lV}(x)+\frac{(x-a)^5}{5!}f^{V}(x)+\frac{(x-a)^6}{6!}f^{VI}(x)+...….. \frac{(x-a)^n}{n!}f^{n}(x)

At x=a =0

f(x) = f(0) + \frac{x}{1!} f^{l}(0) +\frac{(x)^2}{2!}f^{ll}(0)+\frac{(x)^3}{3!}f^{lll}(0)+\frac{(x)^4}{4!}f^{lV}(0)+\frac{(x)^5}{5!}f^{V}(0)+\frac{(x)^6}{6!}f^{VI}(0)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

Substitute  all values , we get

f(x) = f(0) + \frac{x}{1!} (1) +\frac{(x)^2}{2!}(-1)+\frac{(x)^3}{3!}(2)+\frac{(x)^4}{4!}(-6)+\frac{(x)^5}{5!}(24)+\frac{(x)^6}{6!}(-120)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

On simplification we get

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

4 0
3 years ago
8 over 9 + 7 over 9 bjf
valkas [14]

Answer:

That would be 0.87

Step-by-step explanation:

Is that the answer you wanted...?

6 0
3 years ago
Read 2 more answers
Other questions:
  • How can you find the function rule from a table of values
    12·1 answer
  • What are the pattern conbination between these number 18 48 88 128 178 38 68
    13·1 answer
  • What are the more appropriate measures of center and spread for this date set?
    6·2 answers
  • If a pair of standard dice are rolled, what is the probability that one of the dice will be a 3 and the other a 4?
    7·1 answer
  • A wheel has a circumference of 7 5/6 feet. How many times does it turn in 423 feet.
    8·2 answers
  • A+b=2ab<br> b+c=3bc<br> cta=7ca
    11·1 answer
  • Helpppp I will give brainliest <br><br> Thanks
    12·2 answers
  • Solve the equation 1/3(x + 6) = 1/2 (x - 3)
    11·1 answer
  • Cedar and Asa took a trip together to visit their father. when they arrived, their father asked them how long the trip had taken
    11·1 answer
  • Is 0.121122111222 a repeating or terminating decimal? If so, why?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!