1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
3 years ago
7

A weight suspended by a spring vibrates vertically according to the function D D given by D(t)=2sin(4π(t+18)) D ( t ) = 2 sin (

4 π ( t + 1 8 ) ) , where D(t) D ( t ) , in centimeters, is the directed distance of the weight from its central position t t seconds after the start of the motion. Assume the positive direction is upward. What is the instantaneous rate of change of the weight’s position, in centimeters per second, at the moment the weight is first 1 centimeter above its central position?
Mathematics
1 answer:
STALIN [3.7K]3 years ago
8 0

Answer:

21.75 cm/s

Step-by-step explanation:

1 cm above central position means D = 1, so we plug in 1 into D(t) and find the time and which this occurs.

D(t)=2Sin (4\pi(t+18))\\1=2Sin (4\pi(t+18))\\\frac{1}{2}=Sin(4\pi t +72\pi)\\4\pi t + 72 \pi = \frac{\pi}{6}\\4\pi t = \frac{\pi}{6}-72\pi\\t=\frac{\frac{\pi}{6}-72\pi}{4\pi}

This is the time at which this occurs.

To find instantaneous rate of change, we differentiate D(t) and plug in this t we found. Remembering that d/dt (Sin t) = Cos t

D(t)=2Sin (4\pi(t+18))\\D(t)=2Sin(4\pi t + 72\pi)\\D'(t)=2Cos(4\pi t + 72\pi)(4\pi)

Now putting t:

D'(t)=2Cos(4\pi t + 72\pi)(4\pi)\\D'(\frac{\frac{\pi}{6}-72\pi}{4\pi})=2Cos(4\pi (\frac{\frac{\pi}{6}-72\pi}{4\pi}) + 72\pi)(4\pi)\\=8\pi Cos(\frac{\pi}{6})\\=21.75

Thus, the instantaneous rate would be around 21.75 cm/s

You might be interested in
A plumber finds that 4/5 of pipe joint compound is needed for each home. How many holes can be plumbed with 212 cans of compound
Aleksandr-060686 [28]

your answer would be 265 holes because 212 divided by 4/5 is 265

3 0
3 years ago
Find the equation of the line, given the following information:
Art [367]

Answer:

Step-by-step explanation:

y - 4 = 5(x - 1)

y - 4 = 5x - 5

y = 5x - 1

3 0
4 years ago
Rob can wash 20 cars in 5 hours. How many cars can Rob wash in 2 hours?
Neko [114]

Answer:

4 cars because he washed 20 cars in 20 hours

8 0
3 years ago
Read 2 more answers
Please help me with this question thank you
gulaghasi [49]

Answer:

\mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

Step-by-step explanation:

Given

y=\sqrt{\frac{2x+1}{x-1}}

Taking square of both sides

y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)\:^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Simplify}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=0

As we know that \mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2:\quad \left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)

so

\left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)=0        

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2x+1}{x-1}}=0

\mathrm{Subtract\:}y\mathrm{\:from\:both\:sides}

y+\sqrt{\frac{2x+1}{x-1}}-y=0-y

\sqrt{\frac{2x+1}{x-1}}=-y

\mathrm{Square\:both\:sides}

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2

\mathrm{Expand\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}=a^{\frac{1}{2}}

=\left(\left(\frac{2x+1}{x-1}\right)^{\frac{1}{2}}\right)^2

=\frac{2x+1}{x-1}

so equation  \left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2 becomes

\frac{2x+1}{x-1}=y^2

now

\mathrm{Solve\:}\:\frac{2x+1}{x-1}=y^2

\frac{2x+1}{x-1}=y^2

\mathrm{Multiply\:both\:sides\:by\:}x-1

\frac{2x+1}{x-1}\left(x-1\right)=y^2\left(x-1\right)

2x+1=y^2\left(x-1\right)

2x+1=xy^2-y^2         ∵  y^2\left(x-1\right):\quad xy^2-y^2

2x=xy^2-y^2-1

2x-xy^2=-y^2-1

x\left(2-y^2\right)=-y^2-1         ∵ \mathrm{Factor}\:2x-xy^2:\quad x\left(2-y^2\right)

\mathrm{Divide\:both\:sides\:by\:}2-y^2

\frac{x\left(2-y^2\right)}{2-y^2}=-\frac{y^2}{2-y^2}-\frac{1}{2-y^2}

x=\frac{-y^2-1}{2-y^2}

so

y+\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\le \:0\right\}

similarly

y-\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

\mathrm{Verify\:Solutions}:\quad x=\frac{-y^2-1}{2-y^2}

\mathrm{Check\:the\:solutions\:by\:plugging\:them\:into\:}y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Remove\:the\:ones\:that\:don't\:agree\:with\:the\:equation.}

\mathrm{Plug}\quad x=\frac{-y^2-1}{2-y^2}

y^2=\left(\sqrt{\frac{2\left(\frac{-y^2-1}{2-y^2}\right)+1}{\left(\frac{-y^2-1}{2-y^2}\right)-1}}\right)^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=0

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2:\quad \left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)

so

\left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\le \:0

\mathrm{Solve\:}\:y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\ge \:0

\mathrm{True\:for\:all}\:y

Therefore,  \mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

6 0
4 years ago
Please helppppp me Idk how to answer this
BARSIC [14]
C. Plug in 0 into the equation
y = (0)^2 + 10
y = 10
It would be (0,10)
3 0
3 years ago
Other questions:
  • Find the percent markup rounded to the nearest percent.
    13·1 answer
  • (3m − 2n) and (4m − n) are the factors of
    8·2 answers
  • Can you convert 0.75 0.07
    14·1 answer
  • Corinne and Aretha are having a 26-mile race. Corinne gave Aretha a head start by letting her begin 3.5 miles in front of the st
    7·2 answers
  • Sam can prepared 20 wall painting in four weeks. How much time will he need to prepare 80 wall painting?
    5·2 answers
  • Which type of policy should you purchase when moving into off-campus housing at college?
    13·1 answer
  • What is the measure of ABD
    9·1 answer
  • The town of Paxton has a population of 4.81 × 104 residents. The town of Oakville has twice the number of residents than Paxton.
    13·1 answer
  • Write an Equivalent Expression by Combining like terms: 2y + 3 - 5y + 4 + 8y
    12·2 answers
  • Find tаn Ө.<br> A. 15/17<br> B.15/8<br> C.8/15<br> D.8/17
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!