<span>Minimum wykresu funkcji kwadratowej znajduje się w ( -1, 2). Punkt ( 2 , 20) jest również od paraboli. Która funkcja reprezentuje sytuację?
</span><span>Canonical form of the function
</span>f(x) = a* (x - p)² + q
A .f(x) = (x + 1)² + 2 ⇔ p= -1 , q = 2
B. f(x) = (x – 1)² + 2 we reject
C. f(x) = 2(x + 1)² + 2 ⇔ p = -1 , q = 2
D .f(x) = 2(x – 1)² + 2 we reject
The point (2,20) substitute
A f(x) = (x +1)² + 2
20 = (2 + 1 )² + 2
20 ≠ 9 +2
20 ≠ 11 we reject
D f(x) = 2* (x + 1)² + 2
20 = 2* (2+1)² + 2
20 = 2 * 3² + 2
20 = 2 * 9 + 2
20 = 18 + 2
Reply C
Answer:
x = 21 / 228
Step-by-step explanation:
4x - 10y = - 3 -----> equation 1
112x + 5y = 12 -----> equation 2
Multiply 2 on both sides in the equation 2,
2 ( 112x + 5y = 12 )
224x + 10y = 24 -----> equation 3
Add equations 1 & 3,
4x - 10y = - 3
224x + 10y = 24
_____________
228x + 0 = 21
228x = 21
x = 21 / 228
(2xy)^4=4x^a(y^b)4xy
16x^4y^4=16x^(a+1)y^(b+1)
4=a+1 4=b+1
3=a 3=b
Answer:
5 x
Step-by-step explanation:
Simplify the following:
7 x - 2 x
7 x - 2 x = 5 x:
Answer: 5 x