1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
3 years ago
11

What is the solution to the quadratic inequality?

Mathematics
1 answer:
MaRussiya [10]3 years ago
5 0
<h2><em><u>Answer:</u></em></h2><h2><em><u>First, solve each inequality. I'll solve the first one first. </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>7 </u></em></h2><h2><em><u>≥ </u></em></h2><h2><em><u>2 </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u>− </u></em></h2><h2><em><u>5 </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>12 </u></em></h2><h2><em><u>≥ </u></em></h2><h2><em><u>2 </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>6 </u></em></h2><h2><em><u>≥ </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>Therefore, x could be any number less than or equal to 6. In interval notation, this looks like: </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>( </u></em></h2><h2><em><u>− </u></em></h2><h2><em><u>∞ </u></em></h2><h2><em><u>, </u></em></h2><h2><em><u>6 </u></em></h2><h2><em><u>] </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>The parenthesis means that the lower end is not a solution, but every number above it is. (In this case, the lower end is infinity, so a parenthesis must be used, since infinity is not a real number and so it cannot be a solution.) The bracket means that the upper end is a solution. In this case, it indicates that not only could  </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u> be any number less than 6, but it could also be 6. </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>Let's try the second example: </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>3 </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u>− </u></em></h2><h2><em><u>2 </u></em></h2><h2><em><u>4 </u></em></h2><h2><em><u>> </u></em></h2><h2><em><u>4 </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>3 </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u>− </u></em></h2><h2><em><u>2 </u></em></h2><h2><em><u>> </u></em></h2><h2><em><u>16 </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>3 </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u>> </u></em></h2><h2><em><u>18 </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u>> </u></em></h2><h2><em><u>6 </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>Therefore, x could be any number greater than 6, but x couldn't be 6, since that would make the two sides of the inequality equal. In interval notation, this looks like: </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>( </u></em></h2><h2><em><u>6 </u></em></h2><h2><em><u>, </u></em></h2><h2><em><u>∞ </u></em></h2><h2><em><u>) </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>The parentheses mean that neither end of this range is included in the solution set. In this case, it indicates that neither 6 nor infinity are solutions, but every number in between 6 and infinity is a solution (that is, every real number greater than 6 is a solution). </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>Now, the problem used the word "OR", meaning that either of these equations could be true. That means that either  </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u> is on the interval  </u></em></h2><h2><em><u>( </u></em></h2><h2><em><u>− </u></em></h2><h2><em><u>∞ </u></em></h2><h2><em><u>, </u></em></h2><h2><em><u>6 </u></em></h2><h2><em><u>] </u></em></h2><h2><em><u> or the interval  </u></em></h2><h2><em><u>( </u></em></h2><h2><em><u>6 </u></em></h2><h2><em><u>, </u></em></h2><h2><em><u>∞ </u></em></h2><h2><em><u>) </u></em></h2><h2><em><u>. In other words,  </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u> is either less than or equal to 6, or it is greater than 6. When you combine these two statements, it becomes clear that  </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u> could be any real number, since no matter what number  </u></em></h2><h2><em><u>x </u></em></h2><h2><em><u> is, it will fall in one of these intervals. The interval "all real numbers" is written like this: </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>( </u></em></h2><h2><em><u>− </u></em></h2><h2><em><u>∞ </u></em></h2><h2><em><u>, </u></em></h2><h2><em><u>∞ </u></em></h2><h2><em><u>) </u></em></h2><h2><em><u> </u></em></h2><h2><em><u>Final Answer</u></em></h2><h2><em><u>Step-by-step explanation:</u></em></h2>

You might be interested in
2x - 4y + 7x - 87<br> Helppp
xxTIMURxx [149]

Answer:

9x-4y-87

Step-by-step explanation:

2x-4y+7x-87

9x-4y-87

8 0
3 years ago
Read 2 more answers
3. Which statements about the line that passes through (-2, 0) and (2, -4) are true?
diamong [38]

Answer:

B, C, and D.

Step-by-step explanation:

Let's go through each answer choice.

A: To find the slope of a line from two points, we use this formula: (y_2-y_1)/(x_2-x_1). Plugging in the values (-2,0) and (2, -4), we get:

  • (-4-0)/(2+2)
  • -4/4
  • -1

Because option A says the slope is 1, but we got -1, option A is false.

B: To find the y-intercept, we use this formula: b = y_1 - m * x_1

  • b = 0 -(-1) * (-2)
  • b = 1 * (-2)
  • b = -2  

Since we know the value of b is the y-intercept, we could write the y-intercept as (0,-2). Therefore, option B is true.

C: The equation of a line (in slope-intercept form) is y = mx + b, where y - y-coordinate, m = slope, x = x-coordinate, and b = y-intercept. Since we already solved for the y-intercept and slope, let's plug in those values:

  • y = mx +b
  • y = -x -2

As you can see, the equation we got here matches the one in option C, meaning it's true.

D: We know that a point is written like this: (x, y). If the x-coordinate is not zero but the y-coordinate is, then it's the x-intercept. Since the question says that (-2,0) is one of the points the line passes through, and option D says that the x-intercept is (-2,0), it's true.

8 0
3 years ago
Read 2 more answers
The area of a triangle is 30 square centimeters and its base is 10 cm. What is the height in cm of the triangle
Vesnalui [34]

Answer:

The height of the triangle is 6 cm.

Step-by-step explanation:

----------------------------------------

The formula for solving the area of a triangle is  A=\frac{1}{2}bh where b stands for base and h stands for height.

Let's substitute 30 cm^2 for the area and 10 for the base.

30=\frac{1}{2} (10)h

-------------------->>>>

Now, let's solve to find the height.

30=\frac{1}{2}(10)h

Multiply \frac{1}{2} times 10

30=5h

Divide both sides by 5.

6=h

-----------------------------------------

Hope this is helpful.

4 0
3 years ago
A container is filled with water. This container has a small hole. After 20 minutes the amount of water in the container is 600
Grace [21]

Answer:

100 minutes and yes

Step-by-step explanation:

4 0
2 years ago
The Company with the highest percentage of sales revenue from sedans is ________. The relative frequency of the revenue earned b
navik [9.2K]
the firt answer is Allison and the second answer is0.34
4 0
3 years ago
Read 2 more answers
Other questions:
  • The pumpkin patch is open everyday. If it sells 2,750 pounds of pumpkin each day ,about how many pounds does it sell in 7 days?
    5·1 answer
  • Q equal 1/2 p plus 15 solve for p
    5·1 answer
  • Select the letter of the best answer choice. Use 3.14 or 22/7 for π
    13·1 answer
  • What is the distributive property of 5(12x -3) -7(2x +1)
    15·2 answers
  • There are 2/8 cups of peanuts and 1/4 cup of walnuts. Is there a greater amount of peanuts or walnuts? Explain
    11·1 answer
  • Complete the point slope equation of the lone through (-8,-1) and (-6,5)​
    12·1 answer
  • NEED HELP ASAP<br> Solve 4 – x = –8.
    15·1 answer
  • Answer fast again important
    12·1 answer
  • Hᴇʟʟᴏ Bʀᴀɪɴʟɪᴀɴs ¡!
    7·1 answer
  • A business uses straight-line depreciation to determine the value y of an automobile over a 5-year period. Suppose the original
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!