1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
2 years ago
11

the blue line and the yellow line trains just arrived at the station. When will they next arrive at the station at the same time

Mathematics
1 answer:
ivann1987 [24]2 years ago
5 0
Could you add some more details about the problem?
You might be interested in
Imaginá que tenés 125 dados cúbicos del mismo tamaño ¿Cuantos dados de altura tiene el cubo de mayor tamaño que podés armar apil
kumpel [21]

Answer:

(i) Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

Step-by-step explanation:

(i) Sabemos por la Geometría Euclídea del Espacio que un cubo es un sólido regular con 6 caras cuadradas y longitudes iguales. Cada dado tiene un volumen de 1 dado cúbico y 125 dados dan un volumen total de 125 dados cúbicos.

El volumen de un cubo está dado por la siguiente fórmula:

V = L^{3}

Donde:

L - Longitud de la arista, medida en dados.

V - Volumen del cubo, medido en dados cúbicos.

Ahora, necesitamos despejar la longitud de la arista para calcular la altura máxima posible:

L = \sqrt[3]{V}

Dado que V = 125\,dados^{3}, encontramos que la altura del cubo de mayor tamaño sería:

L =\sqrt[3]{125\,dados^{3}}

L = 5\,dados

Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) El área cuadrada formada por cubos está determinada por la siguiente fórmula:

A = L^{2}

Donde:

L - Longitud de arista, medida en dados.

A - Área, medida en dados cuadrados.

Puesto que la longitud de arista se basa en un conjunto discreto, esto es, el número de dados disponibles, debemos encontrar el valor máximo de L tal que no supere 125 y de un área entera. Es decir:

L \leq 125\,dados

Si cada cubo tiene un área de 1 dado cuadrado, entonces un cuadrado conformado por 125 dados tiene un área total de 125 dados cuadrados. Entonces:

L^{2}< 125\,dados^{2}

Esto nos lleva a decir que:

L < 11.180\,dados

Entonces, la longitud máxima del cuadrado con la mayor cantidad de cubos posible es de 11 dados. El número total requerido de cubos es el cuadrado de esa cifra, es decir:

n = (11\,dados)^{2}

n = 121\,dados

Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

4 0
3 years ago
What is the equation of the parabola?
frutty [35]
Y=-1/20(x+3)^2

Your could always tell by which way the curve is pointing and if pointing down it’s a negative it’s pointing up it’s a positive

Hope that helped
7 0
3 years ago
A triangle has 2 sides that equal 6 inches. The other side equals 4 inches. What kind of triangle is this
Tom [10]
Ισοσκελες τρίγωνο
....
7 0
2 years ago
Read 2 more answers
Pleasd help me solve
krok68 [10]

Step-by-step explanation:

y = 2x

if x = 1 y = 2(1) = 2

if x = 2 y = 2(2) =4

4 0
2 years ago
Read 2 more answers
One of the vertices of an equilateral triangle is on the vertex of a square and two other vertices are on the not adjacent sides
Elina [12.6K]
<h2>Answer:</h2>

<em> The side of the triangle is either 38.63ft or 10.35ft</em>

<h2>Step-by-step explanation:</h2>

This problem can be translated as an image as shown in the Figure below. We know that:

  • The side of the square is 10 ft.
  • One of the vertices of an equilateral triangle is on the vertex of a square.
  • Two other vertices are on the not adjacent sides of the same square.

Let's call:

Since the given triangle is equilateral, each side measures the same length. So:

x: The side of the equilateral triangle (Triangle 1)

y: A side of another triangle called Triangle 2.

That length is the hypotenuse of other triangle called Triangle 2. Therefore, by Pythagorean theorem:

\mathbf{(1)} \ x^2=100+y^2

We have another triangle, called Triangle 3, and given that the side of the square is 10ft, then it is true that:

y+(10-y)=10

Therefore, for Triangle 3, we have that by Pythagorean theorem:

(10-y)^2+(10-y)^2=x^2 \\ \\ 2(10-y)^2=x^2 \\ \\ \\ \mathbf{(2)} \ x^2=2(10-y)^2

Matching equations (1) and (2):

2(10-y)^2=100+y^2 \\ \\ 2(100-20y+y^2)=100+y^2 \\ \\ 200-40y+2y^2=100+y^2 \\ \\ (2y^2-y^2)-40y+(200-100)=0 \\ \\ y^2-40y+100=0

Using quadratic formula:

y_{1,2}=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ y_{1,2}=\frac{-(-40) \pm \sqrt{(-40)^2-4(1)(100)}}{2(1)} \\ \\ \\ y_{1}=37.32 \\ \\ y_{2}=2.68

Finding x from (1):

x^2=100+y^2 \\ \\ x_{1}=\sqrt{100+37.32^2} \\ \\ x_{1}=38.63ft \\ \\ \\ x_{2}=\sqrt{100+2.68^2} \\ \\ x_{2}=10.35ft

<em>Finally, the side of the triangle is either 38.63ft or 10.35ft</em>

5 0
3 years ago
Read 2 more answers
Other questions:
  • Using the properties of exponents and logarithms, find the value of x in 19 + 2 ln x = 25.
    9·2 answers
  • What two parts of a regular polygon are congruent?
    10·2 answers
  • In the diagram, the radius of the outer circle is
    9·1 answer
  • Boeing currently produces five models of airplanes for commercial sale. The airline that Lauren works for is rapidly expanding a
    10·1 answer
  • In ΔWXY, x = 680 inches, w = 900 inches and ∠W=157°. Find all possible values of ∠X, to the nearest degree.
    9·1 answer
  • Which angle is vertical to <br><br> (Will reward)
    11·1 answer
  • A physical education class is running a mile. The teacher has set a goal of 12 minutes to complete the mile. Students receive a
    13·2 answers
  • Please help me with the question
    14·1 answer
  • find the circumference of a circle with a radius of 9, that's what it is asking, but I don't understand it, so can you help me?​
    14·2 answers
  • PLEASE HELP IM STUCK PLS
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!