Answer:
The probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
Step-by-step explanation:
Let the random variable <em>X</em> denote the water depths.
As the variable water depths is continuous variable, the random variable <em>X</em> follows a continuous Uniform distribution with parameters <em>a</em> = 2.00 m and <em>b</em> = 7.00 m.
The probability density function of <em>X</em> is:

Compute the probability that a randomly selected depth is between 2.25 m and 5.00 m as follows:

![=\frac{1}{5.00}\int\limits^{5.00}_{2.25} {1} \, dx\\\\=0.20\times [x]^{5.00}_{2.25} \\\\=0.20\times (5.00-2.25)\\\\=0.55](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cint%5Climits%5E%7B5.00%7D_%7B2.25%7D%20%7B1%7D%20%5C%2C%20dx%5C%5C%5C%5C%3D0.20%5Ctimes%20%5Bx%5D%5E%7B5.00%7D_%7B2.25%7D%20%5C%5C%5C%5C%3D0.20%5Ctimes%20%285.00-2.25%29%5C%5C%5C%5C%3D0.55)
Thus, the probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
You worded this weird but wouldn't it be eight?
Answer:
and 
Step-by-step explanation:
Given

per section

Required
Model the scenario
The model of this scenario is:

This gives:
<em />
<em> -- This represents the multiplication model</em>
Divide both sides by 18



Reorder
<em />
<em> -- This represents the division model</em>
9514 1404 393
Answer:
6
Step-by-step explanation:
The value of b that makes the two lines identical is the opposite of the y-intercept of the line.
y = 6x -6 . . . . has y-intercept = -6
The value of b is the number in the term -6, so is 6.