Trying to factor by splitting the middle term
Factoring <span> b2-4b+4</span>
The first term is, <span> <span>b2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -4b </span> its coefficient is <span> -4 </span>.
The last term, "the constant", is <span> +4 </span>
Step-1 : Multiply the coefficient of the first term by the constant <span> 1 • 4 = 4</span>
Step-2 : Find two factors of 4 whose sum equals the coefficient of the middle term, which is <span> -4 </span>.
<span><span> </span></span>
<span><span>-4 + -1 = -5</span><span> -2 + -2 = -4 That's it</span></span>
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -2 and -2
<span>b2 - 2b</span> - 2b - 4
Step-4 : Add up the first 2 terms, pulling out like factors :
b • (b-2)
Add up the last 2 terms, pulling out common factors :
2 • (b-2)
Step-5 : Add up the four terms of step 4 :
(b-2) • (b-2)
Which is the desired factorization
Five squared with the little two and 2 because 5 Times 10 is 50 and five is prime so then from 10 and you get five and two and both five and two are prime
Answer:
A
Step-by-step explanation:
● first one:
The diagonals of a rhombus are perpendicular to each others wich means that they form four right angles.
STP is one of them so this statement is true.
● second one:
If ST and PT were equal this would be a square not a rhombus.
● third one:
If SPQ was a right angle, this woukd be a square.
● fourth one:
Again if the diagonals SQ and PR were equal, this would be a square.
I hope this helps you
Area=1/2.b.c.sinA
Area =1/2.4.3.0,99
Area =5,98
We need to find the expression for " number_of_prizes is divisible number_of_participants". Also there should not remain any remainder left. On in order words, we can say the reaminder we get after division is 0.
Let us assume number of Prizes are = p and
Number of participants = n.
If we divide number of Prizes by number of participants and there will be not remainder then there would be some quotient remaining and that quotent would be a whole number.
Let us assume that quotent is taken by q.
So, we can setup an expression now.
Let us rephrase the statement .
" Number of Prizes ÷ Number of participants = quotient".
p ÷ n = q.
In fraction form we can write
p/n =q ; n ≠ 0.