Answer:
C. All real numbers except 3/4
Step-by-step explanation:
We are given


Firstly, we will find f/g

Domain:
We know that domain is all possible values of x for which any function is defined
so, we know that denominator of any function can not be zero
so, firstly we set denominator =0
and then we can solve for x

Add both sides by 3



so, this function is defined for all values of x except at

Domain will be
All real numbers except 3/4
4/5 is the right answer.....
<em>Greetings from Brasil</em>
From radiciation properties:
![\large{A^{\frac{P}{Q}}=\sqrt[Q]{A^P}}](https://tex.z-dn.net/?f=%5Clarge%7BA%5E%7B%5Cfrac%7BP%7D%7BQ%7D%7D%3D%5Csqrt%5BQ%5D%7BA%5EP%7D%7D)
bringing to our problem
![\large{6^{\frac{1}{3}}=\sqrt[3]{6^1}}](https://tex.z-dn.net/?f=%5Clarge%7B6%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7B6%5E1%7D%7D)
<h2>∛6</h2>
Answer:
The question is incomplete, so I will describe the sine regression model.
The function
y = 0.884 sin(0.245x - 1.093) + 0.400
correspond to the general equation:
y = a sin(bx - c) + d
where:
a = 0.884
b = 0.245
c = 1.093
d = 0.400
The amplitude of the function is computed as follows:
amplitude = |a| = 0.884
The period of the function is computed as follows:
period = 2π/|b| = 25.6456
The phase shift of the function is computed as follows:
phase shift = c/b = 4.4612 to the right (because there is a minus sign before c in the equation)
The vertical shift of the function is computed as follows:
vertical shift = d = 0.400