Answer:
31.04%
Step-by-step explanation:
So he increased 17%, then increased 12%.
When he increased by 17%, his height was 117%, relative to his former height. 12% of 117% is 14.04%
So he increase 17%, then increased 14.04% ( of his original height) so his total growth was 31.04%
I think your equation is wrong. the domain of f(x)= 5x+2 is ALL REAL NUMBERS. That means it’s negative infinity to positive infinity.
Hello there!
I’m not sure if they want me to add the answers together or just do them separately.
Exponents
(-2)^2=(-2)(-2)=4
(7/6)^2=7/6(7/6)=49/36
I hope this helps!
Best wishes.
-HuronGirl
1: (-1,-1) is (x, y) to see if it is a solution, you would just plug in x and y and see if the equation is true.
-4 (-1) + 2(-1) = 2
4 + -2 = 2
2 = 2 CORRECT
So... plug in x and y in the second equation to Make sure it works for that one too.
-1 + -1 = -2
-2 = -2 CORRECT
So, yes. (-1,-1) is a solution to both equations.
![\bf \begin{cases} x=1\implies &x-1=0\\ x=1\implies &x-1=0\\ x=-\frac{1}{2}\implies 2x=-1\implies &2x+1=0\\ x=2+i\implies &x-2-i=0\\ x=2-i\implies &x-2+i=0 \end{cases} \\\\\\ (x-1)(x-1)(2x+1)(x-2-i)(x-2+i)=\stackrel{original~polynomial}{0} \\\\\\ (x-1)^2(2x+1)~\stackrel{\textit{difference of squares}}{[(x-2)-(i)][(x-2)+(i)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D-%5Cfrac%7B1%7D%7B2%7D%5Cimplies%202x%3D-1%5Cimplies%20%262x%2B1%3D0%5C%5C%0Ax%3D2%2Bi%5Cimplies%20%26x-2-i%3D0%5C%5C%0Ax%3D2-i%5Cimplies%20%26x-2%2Bi%3D0%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%28x-1%29%282x%2B1%29%28x-2-i%29%28x-2%2Bi%29%3D%5Cstackrel%7Boriginal~polynomial%7D%7B0%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%5E2%282x%2B1%29~%5Cstackrel%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B%28x-2%29-%28i%29%5D%5B%28x-2%29%2B%28i%29%5D%7D)
![\bf (x^2-2x+1)(2x+1)~[(x-2)^2-(i)^2] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)-(-1)] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)+1] \\\\\\ (x^2-2x+1)(2x+1)~[x^2-4x+5] \\\\\\ (x^2-2x+1)(2x+1)(x^2-4x+5)](https://tex.z-dn.net/?f=%5Cbf%20%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x-2%29%5E2-%28i%29%5E2%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29-%28-1%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29%2B1%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5Bx%5E2-4x%2B5%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29%28x%5E2-4x%2B5%29)
of course, you can always use (x-1)(x-1)(2x+1)(x²-4x+5) as well.