Answer:
8n=20+6(n-2)
Step-by-step explanation:
n is the number of GB
Plan A has no initial fee and charges 8$ per each GB
So A has an equation that is y=0+8n or just y=8n.
Plan B has 20 for the first 2 GB and $6 for each addition GB after the first 2.
So B has an equation that is y=0+20+6(n-2) assuming n is 2 are greater.
So the two equations are y=8n and y=20+6(n-2).
We want Plan A to be the same as Plan B.
So we need to solve:
8n=20+6(n-2).
Let's check our equation:
Distribute:
8n=20+6n-12
Subtract 6n on both sides:
2n=20-12
2n=8
Divide both sides by 2:
n=4
Plan A charges 8 dollars ber GB, so plan A charges 4(8)=32 dollars.
Plan B charges 20 dollars for the first 2GB and 6 dollars for each GB after so we used 4 which means we are spending 20+6(2)=20+12=32 dollars.
They are the amount so n=4 is right.
1,972
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Answer:
El ancho del río es 59.9 metros.
Step-by-step explanation:
El ancho del río lo podemos calcular con la siguiente relación trigonométrica asumiendo que la torre forma un triángulo rectángulo con el río:

En donde:
CA: es el cateto adyacente = Altura de la torre = 28.2 m
CO: es el cateto opuesto = ancho del río =?
θ: es el ángulo adyacente a CA
Dado que el ángulo de depresión (25.2°) está ubicado fuera de la parte superior de la hipotenusa del triángulo que forma la torre con la orilla opuesta del río, debemos calcular el ángulo interno (θ) como sigue:

Ahora, el ancho del río es:

Por lo tanto, el ancho del río es 59.9 metros.
Espero que te sea de utilidad!
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️



_________________________________


##############################


♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Answer:

Step-by-step explanation:
So we have the expression:

To simplify, simply combine the like terms. Therefore:

Further notes:
To understand why we can combine like terms in the first place, we just need to use the distributive property. So we have the expression:

Now, factor out a y from the three terms:

Do all the operations inside the parenthesis:

And we moved the y back to the front!
This is the same result as before. When combining like terms, this is what we're essentially doing but without doing the distributive property manually. I hope you understand a bit better on how and why we can combine like terms!