Answer:
* Elimination; a coefficient in Equation I is an integer multiple of a coefficient in Equation II.
* Elimination; a coefficient in Equation II is an integer multiple of a coefficient in Equation I.
Step-by-step explanation:
Equation I: 4x − 5y = 4
Equation II: 2x + 3y = 2
These equation can only be solved by Elimination method
Where to Eliminate x :
We Multiply Equation I by a coefficient of x in Equation II and Equation II by the coefficient of x in Equation I
Hence:
Equation I: 4x − 5y = 4 × 2
Equation II: 2x + 3y = 2 × 4
8x - 10y = 20
8x +12y = 6
Therefore, the valid reason using the given solution method to solve the system of equations shown is:
* Elimination; a coefficient in Equation I is an integer multiple of a coefficient in Equation II.
* Elimination; a coefficient in Equation II is an integer multiple of a coefficient in Equation I.
If the discount is 15 percent, he still pays (100-15) or 85%
125.99 * 85%
125.99 * .85 = 107.09 is the price he pays for the rod
107.09 * .03 =3.21 is the sales tax
107.09+3.21=110.30 is the price of the rod with the discount and the tax
the answer is 9304=9 thousands 3 hundreds 4 ones
A \greenD{7\,\text{cm} \times 5\,\text{cm}}7cm×5cmstart color #1fab54, 7, start text, c, m, end text, times, 5, start text, c, m
erma4kov [3.2K]
Answer:
The area of the shaded region is 148.04 cm².
Step-by-step explanation:
It is provided that a 7 cm × 5 cm rectangle is inside a circle with radius 6 cm.
The sides of the rectangle are:
l = 7 cm
b = 6 cm.
The radius of the circle is, r = 6 cm.
Compute the area of the shaded region as follows:
Area of the shaded region = Area of rectangle - Area of circle
![=[\text{l}\times\text{b}]-[\pi\test{r}^{2}]\\\\=[7\times5]+[3.14\times 6\times 6]\\\\=35+113.04\\\\=148.04](https://tex.z-dn.net/?f=%3D%5B%5Ctext%7Bl%7D%5Ctimes%5Ctext%7Bb%7D%5D-%5B%5Cpi%5Ctest%7Br%7D%5E%7B2%7D%5D%5C%5C%5C%5C%3D%5B7%5Ctimes5%5D%2B%5B3.14%5Ctimes%206%5Ctimes%206%5D%5C%5C%5C%5C%3D35%2B113.04%5C%5C%5C%5C%3D148.04)
Thus, the area of the shaded region is 148.04 cm².