Answer:
- <em>m</em> =
- <em>μ</em> = 20
- <em>σ </em>= 20
The probability that a person is willing to commute more than 25 miles is 0.2865.
Step-by-step explanation:
Exponential probability distribution is used to define the probability distribution of the amount of time until some specific event takes place.
A random variable <em>X</em> follows an exponential distribution with parameter <em>m</em>.
The decay parameter is, <em>m</em>.
The probability distribution function of an Exponential distribution is:

<u>Given</u>: The decay parameter is, 
<em>X</em> is defined as the distance people are willing to commute in miles.
- The decay parameter is <em>m</em> =
. - The mean of the distribution is:
. - The standard deviation is:
Compute the probability that a person is willing to commute more than 25 miles as follows:

Thus, the probability that a person is willing to commute more than 25 miles is 0.2865.
1.)
Velocity is in m/s, and acceleration is in m/s^2 like you said. Because of this, we can calculate this by dividing the speed by the time it took to get to that speed.
(20 meters/second) / 10 seconds = 2 meters/ second^2
2.)
Same thing with the first one.
(100 meters/second) / 4 seconds = 25 meters / seconds^2
I hope the choices for the numerators of the solutions are given.
I am showing the complete work to find the solutions of this equation , it will help you to find an answer of your question based on this solution.
The standard form of a quadratic equation is :
ax² + bx + c = 0
And the quadratic formula is:
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
So, first step is to compare the given equation with the above equation to get the value of a, b and c.
So, a = 10, b = -19 and c = 6.
Next step is to plug in these values in the above formula. Therefore,




So, 

So, 
Hope this helps you!
The answer is B i had this problem.