Answer:
Yes, x-10 is an accurate expression. . . .
Hope that helps
Answer:
See Explanation
Step-by-step explanation:
The question is incomplete, as the histogram is not attached.
However, the solution to your question is to select the interval with the highest frequency
Take for instance, after getting readings from the histogram, yiu have:
1 - 10: 8
11 - 20: 5
21 - 30: 11
31 - 40: 2
And so on.......
Interval 11 - 20 will represent the required interval because it has the highest frequency.
Check the picture below.
so to find the surface area of the triangular prism, we simply add the areas of each of the figures composing it, as you can see is really just 2 triangles an 3 rectangles.
![\bf \stackrel{\textit{\Large Areas}}{\stackrel{triangles}{2\left[ \cfrac{1}{2}(4)(3) \right]}+\stackrel{\textit{rectangles}}{(3\cdot 10)+(4\cdot 10)+(5\cdot 10)}}\implies 12+30+40+50\implies 132](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btriangles%7D%7B2%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%284%29%283%29%20%5Cright%5D%7D%2B%5Cstackrel%7B%5Ctextit%7Brectangles%7D%7D%7B%283%5Ccdot%2010%29%2B%284%5Ccdot%2010%29%2B%285%5Ccdot%2010%29%7D%7D%5Cimplies%2012%2B30%2B40%2B50%5Cimplies%20132)
now, to get the volume is simply the area of the triangular face times the length, well, we know the area of one of the triangles is 6, times 10 is just 6*10 = 60.