Answer:
Using a rule is direct and not time wasting, which is not the case for listing functions
I think you meant to say

(as opposed to <em>x</em> approaching 2)
Since both the numerator and denominator are continuous at <em>t</em> = 2, the limit of the ratio is equal to a ratio of limits. In other words, the limit operator distributes over the quotient:

Because these expressions are continuous at <em>t</em> = 2, we can compute the limits by evaluating the limands directly at 2:

<h3>
Answer: Choice C</h3>
P = 11/40 + 1/4 - 1/20
=========================================================
Explanation:
The formula we use is
P(A or B) = P(A) + P(B) - P(A and B)
In this case,
- P(A) = 22/80 = 11/40 = probability of picking someone from consumer education
- P(B) = 20/80 = 1/4 = probability of picking someone taking French
- P(A and B) = 4/80 = 1/20 = probability of picking someone taking both classes
So,
P(A or B) = P(A) + P(B) - P(A and B)
P(A or B) = 11/40 + 1/4 - 1/20
which is why choice C is the answer
----------------
Note: P(A and B) = 1/20 which is nonzero, so events A and B are not mutually exclusive.
Well, the answer to the question in your picture is $1200.
If x is the original price, and we took 23%, or 0.23 from that, we are left with 77%, or 0.77 of the full price.
So 0.77x = 924
x = 924/0.77
x = 1,200
1200 - 0.23(1200) = 924
924 = 0.77x