Answer:
PROGRAM QuadraticEquation
Solver
IMPLICIT NONE
REAL :: a, b, c
;
REA :: d
;
REAL :: root1, root2
;
//read in the coefficients a, b and c
READ(*,*) a, b, c
WRITE(*,*) 'a = ', a
WRITE(*,*) 'b = ', b
WRITE(*,*) 'c = ', c
WRITE(*,*)
// computing the square root of discriminant d
d = b*b - 4.0*a*c
IF (d >= 0.0) THEN //checking if it is solvable?
d = SQRT(d)
root1 = (-b + d)/(2.0*a) // first root
root2 = (-b - d)/(2.0*a) // second root
WRITE(*,*) 'Roots are ', root1, ' and ', root2
ELSE //complex roots
WRITE(*,*) 'There is no real roots!'
WRITE(*,*) 'Discriminant = ', d
END IF
END PROGRAM QuadraticEquationSolver
Answer:
public class MagicSquare {
public static void main(String[] args) {
int[][] square = {
{ 8, 11, 14, 1},
{13, 2, 7,12},
{ 3, 16, 9, 6},
{10, 5, 4, 15}
};
System.out.printf("The square %s a magic square. %n",
(isMagicSquare(square) ? "is" : "is not"));
}
public static boolean isMagicSquare(int[][] square) {
if(square.length != square[0].length) {
return false;
}
int sum = 0;
for(int i = 0; i < square[0].length; ++i) {
sum += square[0][i];
}
int d1 = 0, d2 = 0;
for(int i = 0; i < square.length; ++i) {
int row_sum = 0;
int col_sum = 0;
for(int j = 0; j < square[0].length; ++j) {
if(i == j) {
d1 += square[i][j];
}
if(j == square.length-i-1) {
d2 += square[i][j];
}
row_sum += square[i][j];
col_sum += square[j][i];
}
if(row_sum != sum || col_sum != sum) {
return false;
}
}
return d1 == sum && d2 == sum;
}
}
There’s 3 main ones accelerometer, gyroscope, and magnetometer.
Time management is very essential