Answer:
You can't answer this question without knowing the total amount of money they all had in total.
Answer:
1). t ≥ -
2). k ≥ 
3). y < -
4). b > 
5). w ≤ 0
Step-by-step explanation:
1). 




t ≥ -
2). 15k + 11 ≤ 18k - 5
15k - 18k ≤ -5 - 11
-3k ≤ - 16
3k ≥ 16
k ≥ 
3). 44y > 11 + 88y - 22y
44y > 11 + 66y
44y - 66y > 11
-22y > 11
22y < -11

y < 
4). 

(b - 27) > 
b > 
b > 
5). 11w - 8w ≥ 14w
3w - 14w ≥ 0
-11w ≥ 0
w ≤ 0
Answer:
With alpha 0.95 and 8 degrees of freedom χ²= 2.73
And with alpha 0.05 and 8 degrees of freedom χ²=15.51
Step-by-step explanation:
The significance level ∝ = 1- 0.9 = 0.1
But we need the area of the middle so we divide this significance level with 2
so that we get exactly the middle area .
Dividing 0.1/2= 0.05
So we will have two values for chi square
One with 0.9 + 0.05 = 0.95 alpha and one with 0.05 alpha . This is because the chi square is right tailed.
So with alpha 0.95 and 8 degrees of freedom χ²= 2.73
And with alpha 0.05 and 8 degrees of freedom χ²=15.51
This can be shown with a graph.
Password to what exactly?
Answer:
a. 12 feet b. 12 feet 0.5 inches c. 8.33 %
Step-by-step explanation:
a. How far out horizontally on the ground will it protrude from the building?
Since the rise to run ratio is 1:12 and the building is 12 inches off the ground, let x be the horizontal distance the ramp protrudes.
So, by ratios rise/run = 1/12 = 12/x
1/12 = 12/x
x = 12 × 12
x = 144 inches
Since 12 inches = 1 foot, 144 inches = 144 × 1 inch = 144 × 1 foot/12 inches = 12 feet
b. How long should the ramp be?
The length of the ramp, L is gotten from Pythagoras' theorem since the ramp is a right-angled triangle with sides 12 inches and 144 inches respectively.
So, L = √(12² + 144²)
= √[12² + (12² × 12²)]
= 12√(1 + 144)
= 12√145
= 12 × 12.042
= 144.5 inches
Since 12 inches = 1 foot, 144.5 inches = 144 × 1 inch + 0.5 inches = 144 × 1 foot/12 inches + 0.5 inches = 12 feet 0.5 inches
c. What percent grade is the ramp?
The percentage grade of the ramp = rise/run × 100 %
= 12 inches/144 inches × 100 %
= 1/12 × 100 %
= 0.0833 × 100 %
= 8.33 %