Answer:
Suppose that a data set has a minimum value of 18 and a max of 83 and that you want 5 classes. Explain how to find the class width for this frequency table. What happens if you mistakenly use a class width of 13 instead of 14?
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given
square bottom area is 
Suppose x in. is cut from each corner to make a open box with maximum volume
New base area is 
Volume of box

Differentiate V w.r.t x to get maximum volume

Put 
![\left ( 24-x\right )\left [ -2x+24-x\right ]=0](https://tex.z-dn.net/?f=%5Cleft%20%28%2024-x%5Cright%20%29%5Cleft%20%5B%20-2x%2B24-x%5Cright%20%5D%3D0)
![\left ( 24-x\right )\left [ 24-3x\right ]=0](https://tex.z-dn.net/?f=%5Cleft%20%28%2024-x%5Cright%20%29%5Cleft%20%5B%2024-3x%5Cright%20%5D%3D0)

but x=24 is not possible therefore x=8 will yield maximum volume
Answer: =1845
Step-by-step explanation: hope this help
Answer:
the scale factor is 1/4 because the big one has four squares on the bottom so it's four times as big
Answer:
Vertical angles
Step-by-step explanation: