Answer:
4293 4743838 44u4u3
Step-by-step explanation:
Answer:
-105
Step-by-step explanation:
Answer:
616
Step-by-step explanation:
Answer:
x=-1, y = 2, z = 1
Step-by-step explanation:
We are given with three equations and we are asked to find the solution to them.
2x + 2y + 3z = 5 ------------- (A)
6x + 3y + 6z = 6 --------------(B)
3x + 4y + 4z = 9 ---------------(C)
Step 1 .
multiplying equation (A) by 3 and subtracting B from the result
6x + 6y + 9z = 15
6x + 3y + 6z = 6
- - - = -
_______________
3y+3z=9
y+z=3
y=3-z ----------------- (C)
Step 2.
Substituting this value of y in equation B and C
6x + 3(3-z) + 6z = 6
6x+9-3z+6z=6
6x+3z=-3
2x+z=-1 ----------------(D)
3x + 4(3-z) + 4z = 9
3x+12-4z+4z=9
3x=-3
x=-1 ------------ (E)
Putting this value f x in (D)
2(-1)+z=-1
-2+z=-1
z=1
Now we put this value of z in equation (C)
y=3-z
y=3-1
y=2
Hence we have
x=-1, y=2 and z=1
Answer:
x-coordinates of relative extrema = 
x-coordinates of the inflexion points are 0, 1
Step-by-step explanation:

Differentiate with respect to x


Differentiate f'(x) with respect to x

At x =
,

We know that if
then x = a is a point of minima.
So,
is a point of minima.
For inflexion points:
Inflexion points are the points at which f''(x) = 0 or f''(x) is not defined.
So, x-coordinates of the inflexion points are 0, 1