A is the approximate distance
|2x + 6| - 4 = 20
First, add 4 to both sides. / Your problem should look like: |2x + 6| = 20 + 4
Second, simplify 20 + 4 to 24. / Your problem should look like: |2x + 6| = 24
Third, break down the problem into these 2 equations. / 2x + 6 = 24 and -(2x + 6) = 24
Fourth, solve the 1st equation: 2x + 6 = 24
Subtract 6 from both sides. / Your problem should look like: 2x = 24 - 6
Simplify 24 - 6 to 18. / Your problem should look like: 2x = 18
Divide both sides by 2. / Your problem should look like: x =

Simplify

to 9 / Your problem should look like:
x = 9
Fifth, solve the 2nd equation: -(2x + 6) = 24
Simplify brackets. / Your problem should look like: -2x - 6 = 24
Add 6 to both sides. / Your problem should look like: -2x = 24 + 6
Simplify 24 + 6 to 30. / Your problem should look like: -2x = 30
Divide both sides by -2. / Your problem should look like: x =

Simplify

to

/ Your problem should look like: x =

Simplify

to 15. / Your problem should look like:
x = -15
Sixth, collect all of your solutions. / Your problem should look like: x = -15, 9
Answer:
x = -15, 9 (C)
First we need to have same units before comparing them. That is, either both of them are in cm or both of them are in mm. So if we need to convert 12.5 cm to mm, we know that 1 cm =10 mm. So we have to find out how many mm are in 12.5 cm. And let 12.5 cm =x mm. So to find the value of x , we set a proportion and solve for x. That is

The units cancel out and we do cross multiplication. That is

x=125
So 12.5 cm =125 mm. Therefore the correct proportion is C.
Answer:
15
Step-by-step explanation:

I'm assuming this is x^2 + 3x - 4 and x(x^2 + 3x - 2)
1.) First distribute x(x^2 + 3x - 2) to get x^3 + 3x^2 - 2x.
2.) Because you are subtracting all the terms from x^3 + 3x^2 - 2x, it's the same thing as distributing -1 to x^2 + 3x - 4 and then adding it to x^3 + 3x^2 - 2x.
3.) -1(x^2 + 3x - 4) = -x^2 - 3x + 4
4.) Add (x^3 + 3x^2 - 2x) + (-x^2 - 3x + 4)
5.) x^3 + 2x^2 - 5x + 4 is your final answer.