Answer:
THE HEIGHT OF THE KITE FROM THE GROUND=80mtr
Step-by-step explanation:
let H be the height of kite from ground
=
=
1=
H=80meters
Answer:
D,
Step-by-step explanation:
the is the value of b in ax -by =-5
D , cant isolate b
The answer must be C because since they are the SAME line, they must have the SAME slope
Answer: 72 u^2
<h3>
Explanation:</h3>
What we know:
- Both triangles are identical
- Both rectangles are different
- There are values in units^2 given
- There are right angles
How to solve:
We need to find the area of at least one of the triangles and double it. Then, we need to find the areas of both rectangles. Finally, we need to add these areas to find the total area. The final area will be represented in units squared (u^2)
<h2>
Process:</h2>
Triangles
Set up equation A = 1/2(bh)
Substitute A = 1/2(4*3)
Simplify A = 1/2(12)
Solve A = 6
Double *2
A = 12 u^2
Rectangles
Set up equation A = lh
Substitute A = (14)(3)
Simplify A = 42 u^2
Set up equation A = lh
Substitute A = [14-(4+4)](3)
Simplify A = (14-8)(3)
Simplify A = (6)(3)
Multiply A = 18 u^2
Total Area
Set up equation A = R1+R2+T
Substitute A = 42 + 18 + 12
Simplify A = 60 + 12
Solve A = 72 u^2
<h3>
Answer: 72 u^2</h3>
All we need is to put this form in the vertex form f(x) = (ax+b)^2 + c
So we have <span>f (x)= 3x^2+12x+11 ....
Let's complete the square (if you aware of it)
</span><span>
f(x)= 3x^2+12x+11 = 3(x^2+4x)+11 = 3(x^2+4x+4-4)+11
=</span><span> 3([x^2+4x+4]-4)+11 = 3[(x+2)^2-4]+11 =3</span><span>(x+2)^2 - 12 +11 = 3</span><span><span>(x+2)^2 -1
so our form would be:

Here is a parabola with vertex of (-2,-1) and with positive </span> slope (concave up)
</span>
I hope that
helps!