Let W = width of package
Let H = height of package
Let L = length of package
The perimeter cab be one of the following:
P = 2(L + W), or
P = 2(L + H)
The perimeter of the cross section cannot exceed 108 in.
When the width is 10 in, then
2(L + 10) <= 108
L + 10 <= 54
L <= 44 in
When the height is 15 in, then
2(L + 15) <= 108
L + 15 <= 54
L <= 39 in
To satisfy both of these conditions requires that L <= 39 in.
Answer: 39 inches
Answer:
D. 22,417 feet
Step-by-step explanation:
Fine the diagram in the attachment for proper elucidation. Using the SOH, CAH, TOA trigonometry identity to solve for the distance (x) from the plane (P) to the observer (O), the longest side x is the hypotenuse and the side facing the angle of elevation is the opposite.
Hypotenuse = x and Opposite = 15,000feet
According to SOH;


Hence the distance (x) from the plane P to the observer O is approximately 22,417 feet
Answer:
W=38t
Step-by-step explanation: