1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
labwork [276]
4 years ago
13

How do i find the first two selections?

Mathematics
1 answer:
Ainat [17]4 years ago
4 0

I'm not sure what you're asking, but the first three are correct and the last one is a yes.

You might be interested in
106,56, 93,50, 80, 44, 67, 38, 54, 32, __, 26, 28, 20<br> What is the missing number
nalin [4]

Answer:

28

Step-by-step explanation:

6 0
4 years ago
How do you solve (Arc)QPT if &lt;QZT = 120
yuradex [85]
By definition, the arc length is given by:
 arc = R * theta * ((2 * pi) / 360)
 Where,
 theta: angle in degrees
 R: radio
 We have then:
 (Arc) QPT if <QZT = 120:
 theta = 360-120 = 240 degrees
 R = 13.5 units
 Substituting values we have:
 (Arc) QPT = R * theta * ((2 * pi) / 360)
 (Arc) QPT = (13.5) * (240) * ((2 * pi) / 360)
 (Arc) QPT = 56.55 units
 Answer:
 
(Arc) QPT = 56.55 units
7 0
4 years ago
Parallelogram H G J L is shown. Diagonals are drawn from point H to point J and from point G to point L and intersect and point
Ghella [55]

Answer:

50 units.

Step-by-step explanation:

It is given that HGJL is a parallelogram and diagonals intersect each other at point K.

HK=c-7,JK=3c-33,GK=c+12

We now that diagonals of parallelogram bisect each other. So,

HK=JK

c-7=3c-33

33-7=3c-c

26=2c

Divide both sides by 2.

13=c

Now,

GK=c+12=13+12=25

Diagonals of parallelogram bisect each other. So,

GL=2(GK)=2(25)=50

Therefore, the measure of GL is 50 units.

4 0
3 years ago
Read 2 more answers
What two integers have a product of -35 and a sum -2
vovangra [49]

-7 and 5. The product would be -35 and the sum -2.

Hope this helps

8 0
4 years ago
Find dy/dx x^3+y^3=18xy
tatyana61 [14]
Differentiate both sides of the equation.<span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span></span>Differentiate the left side of the equation.Tap for fewer steps...By the Sum Rule, the derivative of <span><span><span>x3</span>+<span>y3</span></span><span><span>x3</span>+<span>y3</span></span></span> with respect to <span>xx</span> is <span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.<span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=3</span><span>n=3</span></span>.<span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Evaluate <span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.Tap for more steps...<span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span></span>Differentiate the right side of the equation.Tap for fewer steps...Since <span>1818</span> is constant with respect to <span>xx</span>, the derivative of <span><span>18xy</span><span>18xy</span></span> with respect to <span>xx</span> is <span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>.<span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>Differentiate using the Product Rule which states that <span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span></span> is <span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span></span> where <span><span>f<span>(x)</span>=x</span><span>f<span>(x)</span>=x</span></span> and <span><span>g<span>(x)</span>=y</span><span>g<span>(x)</span>=y</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Rewrite <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span> as <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=1</span><span>n=1</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span></span>Multiply <span>yy</span> by <span>11</span> to get <span>yy</span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span></span>Simplify.Tap for more steps...<span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span></span>Reform the equation by setting the left side equal to the right side.<span><span>3<span>x2</span>+3<span>y2</span>y'=18xy'+18y</span><span>3<span>x2</span>+3<span>y2</span>y′=18xy′+18y</span></span>Since <span><span>18xy'</span><span>18xy′</span></span> contains the variable to solve for, move it to the left side of the equation by subtracting <span><span>18xy'</span><span>18xy′</span></span> from both sides.<span><span>3<span>x2</span>+3<span>y2</span>y'−18xy'=18y</span><span>3<span>x2</span>+3<span>y2</span>y′-18xy′=18y</span></span>Since <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> does not contain the variable to solve for, move it to the right side of the equation by subtracting <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> from both sides.<span><span>3<span>y2</span>y'−18xy'=−3<span>x2</span>+18y</span><span>3<span>y2</span>y′-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'−18xy'</span><span>3<span>y2</span>y′-18xy′</span></span>.Tap for fewer steps...Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'</span><span>3<span>y2</span>y′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>−18xy'=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>−18xy'</span><span>-18xy′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>+3y'<span>(−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>+3y′<span>(-6x)</span>=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3y'<span>y2</span>+3y'<span>(−6x)</span></span><span>3y′<span>y2</span>+3y′<span>(-6x)</span></span></span>.<span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span>Divide each term by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span> by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span>.<span><span><span><span>3y'<span>(<span>y2</span>−6x)</span></span><span><span>y2</span>−6x</span></span>=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span><span><span>3y′<span>(<span>y2</span>-6x)</span></span><span><span>y2</span>-6x</span></span>=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>3y'=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span>Divide each term by <span>33</span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span> by <span>33</span>.<span><span><span><span>3y'</span>3</span>=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span><span><span>3y′</span>3</span>=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>y'=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span>y′=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>y'=−<span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span><span>y′=-<span><span><span>x2</span>-6y</span><span><span>y2</span>-6x</span></span></span></span>Replace <span><span>y'</span><span>y′</span></span> with <span><span><span>dy</span><span>dx</span></span><span><span>dy</span><span>dx</span></span></span>.<span><span><span>dy</span><span>dx</span></span>=−<span><span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span></span>
6 0
3 years ago
Other questions:
  • The area of a sector of a circle with a radius of 4 centimeters is 2.512 square centimeters. The estimated value of ╥ is 3.14. T
    11·1 answer
  • How can you convert pounds to kilograms?
    15·2 answers
  • Rick has 20 pints of green paint. He uses 2 5 of it to paint a landscape and 3 10 of it while painting a clover. He decides that
    12·1 answer
  • If 5 friends buy a package of 38 balloons, how should they divide them?
    15·2 answers
  • Mr. Roble is traveling to the store and drives 4 miles in 16 minutes. Write a unit rate that describes Mr. Roble's trip to the s
    14·1 answer
  • First to give find the value of x in 96x * 5 = -6 gets brainliest.
    5·1 answer
  • McKenzie spends $13.00 of the $20.00 in her wallet. Which decimal represents the fraction of the $20.00 McKenzie spent?
    5·1 answer
  • S
    9·1 answer
  • How do i solve 8/12 = 6/x
    9·1 answer
  • Ten cards are numbered 1 through 10, and one card is chosen at random. What is the probability that one card has a number greate
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!