1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Burka [1]
3 years ago
8

B. x2 - 16x + 64 = 20

Mathematics
2 answers:
avanturin [10]3 years ago
7 0

Answer:

x_1 = 8+2\sqrt{5}=2(4+\sqrt{5} )

x_2 = 8-2\sqrt{5}=2(4-\sqrt{5} )

Step-by-step explanation:

x^2 - 16x + 64 = 20

I will solve it completing the square

x^2 - 16x + 64 = 20

(x-8)^2 = 20

x-8= \pm\sqrt{20}

x=8 \pm\sqrt{20}

x=8 \pm2\sqrt{5}

x_1 = 8+2\sqrt{5}=2(4+\sqrt{5} )

x_2 = 8-2\sqrt{5}=2(4-\sqrt{5} )

Nostrana [21]3 years ago
5 0

Answer:  The answer is:  " x  =  8  ±  2√5  " .

____________________________

Step-by-step explanation:

____________________________

Given:

  x² - 16x + 64 = 20 ;  Solve for "x" ;

____________________________

Subtract "20" from each side of the equation:

  x² - 16x + 64 - 20 = 20 -20 ;

to get:

  x² - 16x + 44 = 0  ;

(i.e. to get an equation in "quadratic equation format" ;

that is; in the format of:    ax² + bx + c = 0 ;  (a ≠ 0) ;

____________________________

We cannot factor the "left-hand side" of the equation;

so, we can solve for "x" by using the quadratic equation formula;

Note that our equation:  " x² - 16x + 44 = 0 " ;

              is in "quadratic equation format" ;

    that is:  " ax² + bx + c = 0 " ;  (a ≠ 0) ;

                in which:

                   a  =  1 ;

(Note:  The implied coefficient of:  " ax² "  is:   "1" ;

     →  since "1" ; multiplied by any value, results in that exact value.

 This is known as the "identity property" of multiplication.}.

                   b  =  -16 ;

                   c  =  44  .

____________________________

To solve for "x" ; we use the quadratic equation formula:

____________________________

         →   x  =  [ - b  ± √(b² - 4ac) ]  /  [2a] ;

We solve for "x" by plugging in our values for "a" ; "b" ; and "c" ;

____________________________

         →   x  =  { - [-16) ± {√[(-16)² - 4(1)(44) ] }   /  [2 * 1]  ;

____________________________

        →    x  =  [ 16  ±  √ (16² - 4*44) ]  / [2] ;

____________________________

        →    x  =  [ 16  ±  √ (16² - 4*44) ]  / [2] ;

____________________________

        →    x  =  [ 16  ±  √ (256 - 176 )]  / [2] ;

____________________________

        →    x  =  [ 16  ±  √ (80 )]  / [2] ;

Now, let us rewrite:  " √80 " ;

____________________________

  " √80 " =  √16 * √5  =  4*√5 ;

                                     →  write as:  " 4√5 " .

____________________________

Now, take:

____________________________

        →    x  =  [ 16  ±  √ (80 )]  / [2] ;

____________________________

And replace:  " √80 " ;   with:   " 4√5 " ;  and rewrite:

____________________________

        →    x  =  [ 16  ±  4√5 )  / 2 ;

____________________________

Now, divide the numerator by "2" to simplify, and rewrite:

       →  Note:  16 ÷ 2 = 8 ; and:  4 ÷ 2 = 2 ;

So, we have:

____________________________

        →    x  =  8  ±  2√5

____________________________

You might be interested in
Find the area of quadrilateral ABCD whose vertices are A(1,1) B(7,-3) C(12,2) D(7,21)
sasho [114]

Answer:

The area of quadrilateral ABCD is 139 unit^2.

Step-by-step explanation:

Given:

Quadrilateral ABCD whose vertices are A(1,1) B(7,-3) C(12,2) D(7,21).

Now, to find the area.

The coordinates of the quadrilateral are A(1,1), B(7,-3), C(12,2), D(7,21).

So, to find the area we need to bisect the quadrilateral ABCD and get the triangles ABC and ADC and then calculate their areas:

In Δ ABC:

A(x_1,y_1)=(1,1)\:,\:B(x_2,y_2)=(7,-3)\:and\:C(x_3,y_3)=(12,2)

Now, to get the area of triangle ABC:

Area\,of\,triangle\,=\,\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|

Area\,of\,triangle\,=\,\frac{1}{2}\left|1(-3-2)+(7)(2-1)+12(1--3)\right|

Area\,of\,triangle\,=\,\frac{1}{2}\left|1(-5)+(7)(1)+12(4)\right|

On solving we get:

Area\,of\,triangle\,=25.

In Δ ADC:

A(x_1,y_1)=(1,1)\:,\:D(x_2,y_2)=(7,21)\:and\:C(x_3,y_3)=(12,2)

Now, to get the area of triangle ADC:

Area\,of\,triangle\,=\,\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|

Area\,of\,triangle\,=\,\frac{1}{2}\left|1(21-2)+(7)(2-1)+12(1-21)\right|

On solving it by same process as above we get:

Area\,of\,triangle\,=114

Now, to get the area of the quadrilateral we add the areas of the triangles ABC and ADC:

25+114\\=25+114\\=139\ unit^2

Therefore, area of quadrilateral ABCD is 139 unit^2.

4 0
3 years ago
What is the greatest possible error when measuring to the nearest quarter of an inch? 1/8 in. 1/4 in. 1/2 in.
Iteru [2.4K]
The greatest possible error is one half of the measuring unit you're using.

Multiply the unit you use by 1/2:

\frac{1}{4} * \frac{1}{2} = \frac{1}{8}

The greatest possible error will be 1/8 inch.

4 0
3 years ago
Read 2 more answers
What is 7c =42 <br><br> A). factor <br><br> B). product <br><br> C). sum<br><br> D). difference
Murljashka [212]
It is a product. So it is (B)
Hope I helped :)
3 0
4 years ago
PLEASE ANSWER ILL GIVE YOU BRAINLIEST
Georgia [21]

Answer:

i cant see it can you put it one again

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Calculate the slope of the line between the point (-3,2) and (5,0)
Finger [1]

Answer:

The slope of the line is -1/4

Step-by-step explanation:

To find the slope, we use the formula

m = (y2-y1)/(x2-x1)


We have the points  (-3,2) and (5,0)

  = (0-2)/(5--3)

  = (-2)/(5+3)

  =-2/8

 = -1/4

The slope of the line is -1/4

6 0
3 years ago
Other questions:
  • One angle of a triangle measures 136°. The other two angles are congruent. Enter and solve an equation to find the measure x of
    9·1 answer
  • Please help with 3 ASAP due TOMORROW
    10·1 answer
  • According to a study, about 70% of all single men would welcome a woman taking the initiative in asking for a date. a random sam
    8·1 answer
  • How many times does 9 go into 67
    11·2 answers
  • The vertices of a right triangle are (3, 2), (5, 3), and (5, y). What is the value of y? 3 2 3 5
    10·1 answer
  • Round 90.2844097979 to 3 decimals
    10·1 answer
  • The original price of a DVD is $25. The price is marked down 17% each month.
    15·1 answer
  • Tell me something funny and I’ll mark you brainliest!
    13·1 answer
  • Find the surface area of the prism.<br> T<br> 5 cm<br> 4 cm<br> 9 cm
    6·2 answers
  • Please help me I’m super confused on this problem!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!