1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VashaNatasha [74]
4 years ago
14

How do you figure out 3/2 divide 1/4=N. What is n between

Mathematics
1 answer:
Gre4nikov [31]4 years ago
4 0
3/2 divided by 1/4 is the same as 
3/2 times 4/1

n = 6
You might be interested in
A contractor is required by a county planning department to submit one, two, three, four, or five forms (depending on the nature
Anuta_ua [19.1K]

Answer:

a) c = 1/15

b) =2/5

c) = 3/5

d) No, it cannot be the PMF of y.

Step-by-step explanation:

We have that

p_X(x)\geq0

4 0
3 years ago
Helppppppppppppppppppppp!!!!!!!!!1
vitfil [10]

Answer: I need help too

Step-by-step explanation:

I think is -6

6 0
3 years ago
15h - m = 13h + q pleas helppp
tensa zangetsu [6.8K]
I don’t know what I’m solving for so I solved for h and with that it should be h=q/2+m/2

Explanation:

15h-m=13h+q
-13h -13h
———————-
2h-m=q
+m +m
———————-
2h=q+m
/2 /2 /2
———————-
H=q/2+m/2

8 0
3 years ago
Read 2 more answers
The distance from Fort Worth to Fresno is 1,530 miles. If a cyclist maintains an average speed of 17 miles per hour, how many ho
Tju [1.3M]

The time take for the cyclist to travel from Fort Worth to Fresno is 90 \ hours

Explanation:

It is given that the distance from Fort Worth to Fresno is 1,530 miles.

The average speed of the cyclist is 17 miles per hour.

The time travelled by the cyclist can be determined using the formula,

Distance=Speed \times Time

Substituting the value of distance and speed, we get,

1530=17\times Time

Dividing both sides by 17, we get,

90 =Time

Thus, the time take for the cyclist to travel from Fort Worth to Fresno is 90 \ hours

3 0
3 years ago
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
Other questions:
  • Write a quadratic function in standard form with zeros 5 and 6
    11·1 answer
  • Solve x + y = 5 using matrices. 2x – y = 1 I have the answer, x = 2 and y =3, how do I phrase this as a matrices? (2,3)?
    5·1 answer
  • Suppose that insurance companies did a survey. They randomly surveyed 400 drivers and found that 320 claimed they always buckle
    6·1 answer
  • If it is known that x+y/y =3, find the value of the following expression:
    11·1 answer
  • What is the third angle of a right triangle if one of the angles measures 42.6
    6·2 answers
  • Two trains leave towns 1542 kilometers apart at the same time and travel toward each other. one train travels 11 km/h slower tha
    9·1 answer
  • A rectangle has an area of 54 square inches. The width of the rectangle is 9 inches.
    5·1 answer
  • A triangle was translated 4 units down.
    5·2 answers
  • Using the distributive law :43x15+43x5​
    7·1 answer
  • a password system uses four digits from 0 to 9. how many different four-digit passwords with no digit repeated are possible?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!