Answer:
a) 7
b) -8.2
c) 0
d) -7
e) -1 3/4
f) 121
Step-by-step explanation:
Just put the opposite for each one. The absolute value is the distance away from 0.
I don't see a table but I can give you the means to answer it yourself. The inverse function is represented by this:

where k is your constant. You are given a k value of 4. If you solve this for k then you will get xy=4. In your tables, multiply your x value by your y value within your coordinate points and if you get a product of 4 each time you multiply x by y, then that table is your answer.
Answer:
The inverse relation G^(-1) is not a function. Why not? Because the y value y = 3 is paired up with more than one x value (x = 5, x = 2). The inverse relation G^(-1) is the set shown below
{(3,5), (3,2), (4,6)}
All I've done is swap the (x,y) values for each ordered pair to form the inverse relation. As you can see, x = 3 leads to multiple y value outputs which is why this relation is not a function. So in short, the answer is choice C. To have the inverse relation be a function, each value in the original domain must map to exactly one value in the range only. However that doesn't happen as the domain values map to an overlapping y value (y = 3).
Https://www.algebra.com/cgi-bin/plot-formula.mpl?expression=highlight%28x%3C=45%29