<u><em>Answer:</em></u>
They are 4.7miles apart
<u><em>Explanation:</em></u>
Cross-multiply & Divide,
Solve for x,
2 × 12 = 24
24 ÷ 5.1 = 4.7
The Poisson distribution defines the probability of k discrete and independent events occurring in a given time interval.
If λ = the average number of event occurring within the given interval, then
For the given problem,
λ = 6.5, average number of tickets per day.
k = 6, the required number of tickets per day
The Poisson distribution is
The distribution is graphed as shown below.
Answer:
The mean is λ = 6.5 tickets per day, and it represents the expected number of tickets written per day.
The required value of k = 6 is less than the expected value, therefore the department's revenue target is met on an average basis.
Answer:
The other side was decreased to approximately .89 times its original size, meaning it was reduced by approximately 11%
Step-by-step explanation:
We can start with the basic equation for the area of a rectangle:
l × w = a
And now express the changes described above as an equation, using "p" as the amount that the width is changed:
(l × 1.1) × (w × p) = a × .98
Now let's rearrange both of those equations to solve for a / l. Starting with the first and easiest:
w = a/l
now the second one:
1.1l × wp = 0.98a
wp = 0.98a / 1.1l
1.1 wp / 0.98 = a/l
Now with both of those equalling a/l, we can equate them:
1.1 wp / 0.98 = w
We can then divide both sides by w, eliminating it
1.1wp / 0.98w = w/w
1.1p / 0.98 = 1
And solve for p
1.1p = 0.98
p = 0.98 / 1.1
p ≈ 0.89
So the width is scaled by approximately 89%
We can double check that too. Let's multiply that by the scaled length and see if we get the two percent decrease:
.89 × 1.1 = 0.979
That should be 0.98, and we're close enough. That difference of 1/1000 is due to rounding the 0.98 / 1.1 to .89. The actual result of that fraction is 0.89090909... if we multiply that by 1.1, we get exactly .98.
49/12
Just mulitply the top and the bottom across.
7*7/4*3
49/12