1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
10

Which of the following is an even function?

Mathematics
2 answers:
Kaylis [27]3 years ago
8 0
f(x)\ is\ an\ even\ function\ if\ f(-x)=f(x)\\--------------------\\\\g(x)=(x-1)^2+1=x^2-2x+1+1=x^2-2x+2\\g(-x)=(-x-1)^2+1=x^2+2x+1+1=x^2+2x+2\\g(-x)\neq g(x)\ it's\ not\ an\ even\ function

g(x)=2x^2+1\\g(-x)=2(-x)^2+1=2x^2+1\\g(-x)=g(x)\ it's\ an\ even\ function\\\\\\g(x)=4x+2\\g(-x)=4(-x)+2=-4x+2\\g(-x)\neq g(x)\ it's\ not\ an\ even\ function\\\\\\g(x)=2x\\g(-x)=2(-x)=-2x\\g(-x)\neq g(x)\ it's\ not\ an\ even\ function
abruzzese [7]3 years ago
6 0
Hello,

A function f(x) is even if f(-x)=f(x).

A: (x-1)²+1≠((-x)-1)²+1

B:2x²+1=2(-x)²+1 is even

C:4x+2≠4*(-x)+2

D:2x≠2*(-x)

Answer B



You might be interested in
Mrs. Tinsley’s favorite smoothie consists of 2 cups ice, 3 cups strawberries, and 4 cups orange juice. a. Ratio of strawberries
mamaluj [8]
3 to 4 is the ratio of strawberries to orange juice.
please give brainliest and have a great day!
4 0
2 years ago
Read 2 more answers
Use the equation given below to help you determine Which statement best describes how you find the net change in an your answer.
Ksivusya [100]

Answer:

A   is the answer I go with although  Im not that sure

7 0
2 years ago
What does this equal?
anzhelika [568]
It should be about 22.55.
4 0
3 years ago
‪YALL TEXT +1 (201) 496-1249 TO STOP BEING RACIST‬
ArbitrLikvidat [17]

Answer:

bet I will

Step-by-step explanation:

4 0
2 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • I need help please I t is really hard sorry if you can’t see it
    6·2 answers
  • For what point on the curve of y=8x^2 - 3x is the slope of a tangent line equal to -67
    11·1 answer
  • CAN SOMEONE PLEASE HELP ME ASAP PLEASEE ANYBODY LITERALLY ANYONE OUT THERE PLEASE. Determine m∠FNT and Determine m∠KTU.
    8·1 answer
  • Write an equation where a number is added to a variable, and a solution is -8.
    10·1 answer
  • Bilal’s favorite colors are \red{\text{red}}redstart color #df0030, start text, r, e, d, end text, end color #df0030 and \green{
    14·2 answers
  • What is the linear function equation that best fits the data set?
    11·1 answer
  • Answer all 4 for braininess
    5·2 answers
  • You want to buy a pet lizard that costs ​$45. You already have ​$14 and you plan to save ​$7 per week. If w represents the numbe
    11·1 answer
  • Elena bowls two games on Saturday. Her score in the second game is 30 more than ¾ of her score the first game. Elena's total sco
    15·1 answer
  • 2. Sammie has 3 feet of ribbon. She is making bows for her friends that each use of 1/3 of a foot
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!