Answer:
6 5/12
Step-by-step explanation:
Given the expression :
4 2/3 + 1 3/4
The sum of the numbers :
4 2/3 + 1 3/4
14/3 + 7/4
L.C.M of 3 and 4 = 12
(56 + 21) / 12
77 / 12
= 6 5/12
The sum of the first ten prime numbers is 129.
<h3>What is a prime number?</h3>
The prime numbers are those numbers that have only one factor namely 1 and the number itself.
The first 10 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.
Their sum is
2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29
= 129
Hence, the sum of the first ten prime numbers is 129.
Learn more about prime numbers;
brainly.com/question/4184435
#SPJ1
Answer:
E. The entire population is measured in both cases, so the actual difference in means can be computed and a confidence interval should not be used.
Step-by-step explanation:
The entire population of Greek and Egyptian mathematicians was already measured by Amara. She can measure the actual difference in the mean. Therefore, she needn't use a confidence interval. It is mostly common for a researcher to be more interested in the difference between means than in the specific values of the means. The difference in sample means is used to compute the difference in population means.
Amara's sample is a random selection of Greek and Egyptian mathematicians. It is a smaller group drawn from the population that has the characteristics of the entire population. The observations and conclusions made against the sample data are attributed to the population. In this case, the entire position is measured.
A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two groups (Greek and Egyptian mathematicians) which may be related in certain features. It is mostly used when the data sets, like the data set recorded as the outcome from rolling a die 50 times, would follow a normal distribution and may have unknown variances. A t-test is used as a hypothesis testing tool, which allows testing of an assumption applicable to a population. Once the actual difference is known, a confidence interval should not be used.
<span><span>Graph <span>x2<span> = 4</span>y</span><span> and state the vertex, focus, axis of symmetry, and directrix.</span></span><span>This is the same graphing that I've done in the past: </span><span>y = (1/4)x2</span><span>. So I'll do the graph as usual:</span></span><span> </span><span>The vertex is obviously at the origin, but I need to "show" this "algebraically" by rearranging the given equation into the conics form:<span>x2 = 4y</span> Copyright © Elizabeth Stapel 2010-2011 All Rights Reserved<span>
(x – 0)2 = 4(y – 0)</span><span>This rearrangement "shows" that the vertex is at </span><span>(h, k) = (0, 0)</span><span>. The axis of symmetry is the vertical line right through the vertex: </span><span>x = 0</span>. (I can always check my graph, if I'm not sure about this.) The focus is "p" units from the vertex. Since the focus is "inside" the parabola and since this is a "right side up" graph, the focus has to be above the vertex.<span>From the conics form of the equation, shown above, I look at what's multiplied on the unsquaredpart and see that </span><span>4p = 4</span><span>, so </span><span>p = 1</span><span>. Then the focus is one unit above the vertex, at </span>(0, 1)<span>, and the directrix is the horizontal line </span><span>y = –1</span>, one unit below the vertex.<span>vertex: </span>(0, 0)<span>; focus: </span>(0, 1)<span>; axis of symmetry: </span><span>x<span> = 0</span></span><span>; directrix: </span><span>y<span> = –1</span></span></span><span><span><span>Graph </span><span>y2<span> + 10</span>y<span> + </span>x<span> + 25 = 0</span></span>, and state the vertex, focus, axis of symmetry, and directrix.</span><span>Since the </span>y<span> is squared in this equation, rather than the </span>x<span>, then this is a "sideways" parabola. To graph, I'll do my T-chart backwards, picking </span>y<span>-values first and then finding the corresponding </span>x<span>-values for </span><span>x = –y2 – 10y – 25</span>:<span>To convert the equation into conics form and find the exact vertex, etc, I'll need to convert the equation to perfect-square form. In this case, the squared side is already a perfect square, so:</span><span>y2 + 10y + 25 = –x</span> <span>
(y + 5)2 = –1(x – 0)</span><span>This tells me that </span><span>4p = –1</span><span>, so </span><span>p = –1/4</span><span>. Since the parabola opens to the left, then the focus is </span>1/4<span> units to the left of the vertex. I can see from the equation above that the vertex is at </span><span>(h, k) = (0, –5)</span><span>, so then the focus must be at </span>(–1/4, –5)<span>. The parabola is sideways, so the axis of symmetry is, too. The directrix, being perpendicular to the axis of symmetry, is then vertical, and is </span>1/4<span> units to the right of the vertex. Putting this all together, I get:</span><span>vertex: </span>(0, –5)<span>; focus: </span>(–1/4, –5)<span>; axis of symmetry: </span><span>y<span> = –5</span></span><span>; directrix: </span><span>x<span> = 1/4</span></span></span><span><span>Find the vertex and focus of </span><span>y2<span> + 6</span>y<span> + 12</span>x<span> – 15 = 0</span></span></span><span><span>The </span>y<span> part is squared, so this is a sideways parabola. I'll get the </span>y stuff by itself on one side of the equation, and then complete the square to convert this to conics form.<span>y2 + 6y – 15 = –12x</span> <span><span>
y</span>2 + 6y + 9 – 15 = –12x + 9</span> <span>
(y + 3)2 – 15 = –12x + 9</span> <span>
(y + 3)2 = –12x + 9 + 15 = –12x + 24</span> <span>
(y + 3)2 = –12(x – 2)</span> <span>
(y – (–3))2 = 4(–3)(x – 2)</span></span><span><span>Then the vertex is at </span><span>(h, k) = (2, –3)</span><span> and the value of </span>p<span> is </span>–3<span>. Since </span>y<span> is squared and </span>p<span> is negative, then this is a sideways parabola that opens to the left. This puts the focus </span>3 units to the left of the vertex.<span>vertex: </span>(2, –3)<span>; focus: </span><span>(–1, –3)</span></span>
It is still 3 units. Translating it to the right moves it as a whole, as a whole, it has three units, so after translating it over, it still has three units.