Given (n)=-14
where (n-1) x 7 + 91
(-14) = -14
N
- -76=116
5
If the question gives you another variable, just switch it out with n
Y= 2/3x + 10 (or 11?) is the equation
Answer:
Yes
Step-by-step explanation:
That number is irrational because it does not repeat and rational number repeats
Check the picture below. We know that the rectangle has a length of AB and a width of AD, so simply let's find those distances to get the perimeter and area, recall that the perimeter is simply two lengths plus two widths, and the area is just length times width.
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{2}~,~\stackrel{y_1}{3})\qquad B(\stackrel{x_2}{4}~,~\stackrel{y_2}{5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AB=\sqrt{[4 - 2]^2 + [5 - 3]^2}\implies AB=\sqrt{2^2+2^2}\implies \boxed{AB=2\sqrt{2}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B2%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AB%3D%5Csqrt%7B%5B4%20-%202%5D%5E2%20%2B%20%5B5%20-%203%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B2%5E2%2B2%5E2%7D%5Cimplies%20%5Cboxed%7BAB%3D2%5Csqrt%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{2}~,~\stackrel{y_1}{3})\qquad D(\stackrel{x_2}{3}~,~\stackrel{y_2}{2}) ~\hfill AD=\sqrt{[3 - 2]^2 + [2 - 3]^2} \\\\\\ AD = \sqrt{1^2+(-1)^2}\implies \boxed{AD=\sqrt{2}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\large Perimeter}}{2\sqrt{2}+2\sqrt{2}+\sqrt{2}+\sqrt{2}}\implies 6\sqrt{2} \\\\\\ \stackrel{\textit{\large Area}}{2\sqrt{2}\cdot \sqrt{2}\implies 2\sqrt{2^2}}\implies 4](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B2%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20D%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B2%7D%29%20~%5Chfill%20AD%3D%5Csqrt%7B%5B3%20-%202%5D%5E2%20%2B%20%5B2%20-%203%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AD%20%3D%20%5Csqrt%7B1%5E2%2B%28-1%29%5E2%7D%5Cimplies%20%5Cboxed%7BAD%3D%5Csqrt%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20Perimeter%7D%7D%7B2%5Csqrt%7B2%7D%2B2%5Csqrt%7B2%7D%2B%5Csqrt%7B2%7D%2B%5Csqrt%7B2%7D%7D%5Cimplies%206%5Csqrt%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20Area%7D%7D%7B2%5Csqrt%7B2%7D%5Ccdot%20%5Csqrt%7B2%7D%5Cimplies%202%5Csqrt%7B2%5E2%7D%7D%5Cimplies%204)