Answer:
Ordered from least to greatest:
3/4 x 4/9, 7/7 x 4/9, 8/6 x 4/9, 2 x 4/9
Step-by-step explanation:
7/7*4/9=0.4444
3/4*4/9=0.3333
8/6*4/9=0.5925925926
2*4/9=0.8888888889
Answer:
a = 60
60°, 60°, 120°, and 120°
Step-by-step explanation:
So we know that the sum of the angle measures of the quadrilateral is 360° and that the four angle measures are a, 2a, a, and 2a. This means that the sum of a, 2a, a, and 2a should equal 360.
a + 2a + a + 2a = 360
Combine like terms.
6a = 360
Divide both sides by 6.
a = 60
So the value of a would be 60.
Now to find the angle measures from least to greatest, we would have to find the values of a, 2a, a, and 2a.
a = 60
2a = 120
a = 60
2a = 120
So the angle measures from least to greatest is 60°, 60°, 120°, and 120°.
I hope you find my answer and explanation to be helpful. Happy studying.
Answer:
250
Step-by-step explanation:
habddhdhddndbyzxhsbsvssns<em><u>n</u></em><em><u>d</u></em><em><u>b</u></em><em><u>d</u></em><em><u>h</u></em><em><u>d</u></em><em><u>n</u></em><em><u>h</u></em><em><u>s</u></em><em><u>s</u></em><em><u>h</u></em><em><u>z</u></em><em><u>z</u></em><em><u>f</u></em><em><u>f</u></em><em><u>z</u></em><em><u>z</u></em><em><u>z</u></em><em><u>b</u></em><em><u>z</u></em><em><u>h</u></em><em><u>z</u></em><em><u>j</u></em><em><u>z</u></em><em><u>n</u></em><em><u>z</u></em><em><u>z</u></em><em><u>h</u></em><em><u>z</u></em><em><u>d</u></em><em><u>g</u></em><em><u>z</u></em><em><u>z</u></em><em><u>z</u></em><em><u>n</u></em><em><u>d</u></em><em><u>d</u></em><em><u>n</u></em><em><u>d</u></em><em><u>d</u></em><em><u>x</u></em><em><u>h</u></em><em><u>b</u></em><em><u>x</u></em><em><u>n</u></em><em><u>x</u></em>
Answer:
x = 22°
w = 30°
y = 30°
z = 52°
Step-by-step explanation:
From ΔACD,
AD is the diameter and ∠ACD is the angle subtended by the diameter.
Therefore, m∠ACD = 90°
By triangle sum theorem,
m∠DAC + m∠ACD + m∠CDA = 180°
w° + 90° + 60° = 180°
w = 180 - 150
w = 30°
AB║ED and AD is a transversal line.
Therefore, m∠BAD = m∠ADE
(w + 22)° = z°
30 + 22 = z
z = 52°
Since, ∠CEB and ∠BAC are the inscribed angles subtended by the same arc BC,
Therefore, m∠CEB = m∠BAC
x = 22°
Similarly, ∠CED and ∠DAC are the inscribed angles subtended by the same arc CD,
m∠CED = m∠DAC = 30°
y = 30°