1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marta_Voda [28]
3 years ago
15

What’s the answer to -40 = 8(g-11)

Mathematics
2 answers:
Delicious77 [7]3 years ago
8 0
-40= 8g-88
+88
48=8g
G=6
Serhud [2]3 years ago
4 0

Answer:

g = 6

Step-by-step explanation:

- 40 = 8 ( g - 11 )

- 40 = 8g - 88

+88 .        +88

48 = 8g

__ .   ___

8 .      8

6 = g  

You might be interested in
IM 7.1.10 Cool Down
Liono4ka [1.6K]

Answer:

Calculating the Actual Distance using the Scale

If the scale is 1 : x, then multiply the map distance by x to calculate the actual distance.

Step-by-step explanation:

4 0
3 years ago
Three consecutive integers have a sum of –21. Which equation can be used to find the value of the three numbers?
Ksju [112]

Answer:

The third one, x+(x+1)+(x+2)=-21 because x, x+1 and x+2 are three consecutive numbers.

6 0
3 years ago
Read 2 more answers
A particular shade of orange paint has 2 cups of yellow paint for every 3 cups of red paint.According to the double number line,
Amanda [17]

Answer:9 cups of red paint

Step-by-step explanation:1 batch = 3 cups of paint and you need to find the number of cups of paint for 3 batches so you multiply 3 x 3 and get 9. Hope this helped!!!:)

4 0
3 years ago
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
Please answer please answer
inessss [21]
I attached a photo of my work below; I just screenshotted the photo you provided. I apologize in advance for any mistakes, it’s 1 am and I’m in need of some sleep. However, I hope it helps otherwise. Have a good one!

8 0
2 years ago
Read 2 more answers
Other questions:
  • The concept of determining which reactant is limiting and which is in excess is akin to determining the number of sandwiches tha
    12·1 answer
  • The length of a rectangle is 3.7 inches when rounded to the nearest tenth of an inch.
    11·2 answers
  • Maria put 18 crayons in 3 different baskets. She put the same number of crayons in each basket. How many crayons did Maria put i
    7·2 answers
  • Beth bought 3 pairs of earrings for $4.50 each and 2 bracelets for $5.00 each. She gave the clerk $25.00. How much change did Be
    14·1 answer
  • 15. What is the graph of the function rule? <br> y = |3x| - 1
    6·2 answers
  • The volume of a sphere is 3,000π m3. What is the radius of the sphere to the nearest meter?
    15·2 answers
  • A line passes through the point (4,-4) and has a slope of -4. Find
    10·1 answer
  • You have two strains of mice, one is inbred and the other is genetically heterogeneous. You examine weight differences for the m
    6·1 answer
  • Mr. Hann is trying to decide how many new copies of a book to order for his students. Each book weighs 6 ounces .Which ordered p
    15·1 answer
  • Which 3-D object is a polyhedron?<br> A. sphere<br> B. cube <br> C. cone
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!