Answer:
L = 5u
Step-by-step explanation:
area = 8 × L
L = area ÷ 8
40 ÷ 8 = 5
L = 5u
Answer:
12)
(9y +7)=(2y +98)( Because vertically opposite angle is always equal)
9y - 2y = 98-7
9y - 2y = 98-7
7y= 91
y =13
<em>ther</em><em>fore</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>1</em><em>3</em>
<em>(</em><em>9</em><em>y</em><em> </em><em>+</em><em> </em><em>7</em><em>)</em>
9*13+7
117+7
124
(2y +98)
2*13+98
26+98
124
Answer:
1. 180-(46+14)=120
2.46+14+120=180
Step-by-step explanation:
If you're using the app, try seeing this answer through your browser: brainly.com/question/2866883_______________
dy
Find —— for an implicit function:
dx
x²y – 3x = y³ – 3
First, differentiate implicitly both sides with respect to x. Keep in mind that y is not just a variable, but it is also a function of x, so you have to use the chain rule there:

Applying the product rule for the first term at the left-hand side:
![\mathsf{\left[\dfrac{d}{dx}(x^2)\cdot y+x^2\cdot \dfrac{d}{dx}(y)\right]-3\cdot 1=3y^2\cdot \dfrac{dy}{dx}-0}\\\\\\ \mathsf{\left[2x\cdot y+x^2\cdot \dfrac{dy}{dx}\right]-3=3y^2\cdot \dfrac{dy}{dx}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cleft%5B%5Cdfrac%7Bd%7D%7Bdx%7D%28x%5E2%29%5Ccdot%20y%2Bx%5E2%5Ccdot%20%5Cdfrac%7Bd%7D%7Bdx%7D%28y%29%5Cright%5D-3%5Ccdot%201%3D3y%5E2%5Ccdot%20%5Cdfrac%7Bdy%7D%7Bdx%7D-0%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cleft%5B2x%5Ccdot%20y%2Bx%5E2%5Ccdot%20%5Cdfrac%7Bdy%7D%7Bdx%7D%5Cright%5D-3%3D3y%5E2%5Ccdot%20%5Cdfrac%7Bdy%7D%7Bdx%7D%7D)
dy
Now, isolate —— in the equation above:
dx


Compute the derivative value at the point (– 1, 2):
x = – 1 and y = 2

I hope this helps. =)
Tags: <em>implicit function derivative implicit differentiation chain product rule differential integral calculus</em>
100 meters is the exact same as 1000000 millimeters.
1 meter = 1000 millimeters.
100 x 1000 = 1000000 millimeters.