Answer:
(A) $1,055.35 (B) $2,180.53 (C) $780.07 (D) $412.08.
Explanation:
The tenor of the bond is 27 years i.e. (27 * 2=) 54 periods of 6 months each (n).
Face Value (F) = $1,000
Coupon (C) = 6% annually = 3% semi annually = (3% * 1000 face value) = $30.
The Present Value (PV) of the Bond is computed as follows.
PV of recurring coupon payments + PV of face value at maturity
= ![\frac{C(1-(1+r)^{-n}) }{r} + \frac{F}{(1+r)^{n}}](https://tex.z-dn.net/?f=%5Cfrac%7BC%281-%281%2Br%29%5E%7B-n%7D%29%20%7D%7Br%7D%20%2B%20%5Cfrac%7BF%7D%7B%281%2Br%29%5E%7Bn%7D%7D)
A) Yield = 5.6% annually = 2.8% semi annually.
![PV = \frac{30(1-(1.028)^{-54}) }{0.028} + \frac{1,000}{(1.028)^{54}}](https://tex.z-dn.net/?f=PV%20%3D%20%5Cfrac%7B30%281-%281.028%29%5E%7B-54%7D%29%20%7D%7B0.028%7D%20%2B%20%5Cfrac%7B1%2C000%7D%7B%281.028%29%5E%7B54%7D%7D)
= 830.25 + 225.10
= $1,055.35.
B) Yield = 1% annually = 0.5% semi annually.
![PV = \frac{30(1-(1.005)^{-54}) }{0.005} + \frac{1,000}{(1.005)^{54}}](https://tex.z-dn.net/?f=PV%20%3D%20%5Cfrac%7B30%281-%281.005%29%5E%7B-54%7D%29%20%7D%7B0.005%7D%20%2B%20%5Cfrac%7B1%2C000%7D%7B%281.005%29%5E%7B54%7D%7D)
= 1,416.64 + 763.89
= $2,180.53.
C) Yield = 8% annually = 4% semi annually.
![PV = \frac{30(1-(1.04)^{-54}) }{0.04} + \frac{1,000}{(1.04)^{54}}](https://tex.z-dn.net/?f=PV%20%3D%20%5Cfrac%7B30%281-%281.04%29%5E%7B-54%7D%29%20%7D%7B0.04%7D%20%2B%20%5Cfrac%7B1%2C000%7D%7B%281.04%29%5E%7B54%7D%7D)
= 659.79 + 120.28
= $780.07.
D) Yield = 15% annually = 7.5% semi annually.
![PV = \frac{30(1-(1.075)^{-54}) }{0.075} + \frac{1,000}{(1.075)^{54}}](https://tex.z-dn.net/?f=PV%20%3D%20%5Cfrac%7B30%281-%281.075%29%5E%7B-54%7D%29%20%7D%7B0.075%7D%20%2B%20%5Cfrac%7B1%2C000%7D%7B%281.075%29%5E%7B54%7D%7D)
= 391.95 + 20.13
= $412.08.