<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em>
Answer:
the first one
Step-by-step explanation:
y-y1=m(x-x1)
y-20=12(x-3)

simplify:

Given:
The inequalities are:


To find:
The integer values that satisfy both inequalities.
Solution:
We have,


For
, the possible integer values are
...(i)
For
, the possible integer values are
...(ii)
The common values of x in (i) and (ii) are

Therefore, the integer values -1, 0 and 1 satisfy both inequalities.
Answer:
∠ XZY ≈ 23.6°
Step-by-step explanation:
Using the sine ratio in the right triangle, that is
sinXZY =
=
=
, then
∠ XZY =
(
) ≈ 23.6° ( to 1 dec. place )