Answer:
The probability that the maximum speed is at most 49 km/h is 0.8340.
Step-by-step explanation:
Let the random variable<em> </em><em>X</em> be defined as the maximum speed of a moped.
The random variable <em>X</em> is Normally distributed with mean, <em>μ</em> = 46.8 km/h and standard deviation, <em>σ</em> = 1.75 km/h.
To compute the probability of a Normally distributed random variable we first need to convert the raw score of the random variable to a standardized or <em>z</em>-score.
The formula to convert <em>X</em> into <em>z</em>-score is:

Compute the probability that the maximum speed is at most 49 km/h as follows:
Apply continuity correction:
P (X ≤ 49) = P (X < 49 - 0.50)
= P (X < 48.50)

*Use a <em>z</em>-table for the probability.
Thus, the probability that the maximum speed is at most 49 km/h is 0.8340.
Answer:
Step-by-step explanation:
<em>Parallel lines divide the transversals proportionally.</em>
Set proportions and solve for k:
- k/24 = 64/32
- k/24 = 2
- k = 24*2
- k = 48
Correct choice is E.
Answer:
- Part A: The price of fuel A is decreasing by 12% per month.
- Part B: Fuel A recorded a greater percentage change in price over the previous month.
Explanation:
<u>Part A:</u>
The function
calculates the price of fuel A each month by multiplying the price of the month before by 0.88.
Month price, f(x)
1 2.27 (0.88) = 1.9976 ≈ 2.00
2 2.27(0.88)² = 1.59808 ≈ 1.60
3 2.27(0.88)³ = 1.46063 ≈ 1.46
Then, the price of fuel A is decreasing.
The percentage per month is (1 - 0.88) × 100 = 12%, i.e. the price decreasing by 12% per month.
<u>Part B.</u>
<u>Table:</u>
m price, g(m)
1 3.44
2 3.30
3 3.17
4 3.04
To find if the function decreases with a constant ration divide each pair con consecutive prices:
- ratio = 3.30 / 3. 44 = 0.959 ≈ 0.96
- ratio = 3.17 / 3.30 = 0.960 ≈ 0.96
- ratio = 3.04 / 3.17 = 0.959 ≈ 0.96
Thus, the price of fuel B is decreasing by (1 - 0.96) × 100 =4%.
Hence, the fuel A recorded a greater percentage change in price over the previous month.
Answer:
256 m^2
Step-by-step explanation:
area = b x h
16 x 16 = <em>256</em>
both combined would be <em>512</em>
Point-slope form of a line is
y=mx+b
where m is the slope and b is your y intercept
So, if the slope is 5, then that is your m value
y=5x+b
To find the value of b, that is just the value of where the line passes the y axis