1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
2 years ago
14

What is the area of this cylinder? the height is 20 meters and the radius is 17 meters

Mathematics
1 answer:
antiseptic1488 [7]2 years ago
8 0

Answer:

18149.20

Step-by-step explanation:

V=\pi(20)(17^2) \\ \\ \approx 3.14(17^2)(20) \\ \\ =18149.20

You might be interested in
mary will spin the spinner below 150 times. about how many times should mary expect the spinner to land on a number greater than
irga5000 [103]

Answer:

56 times (This is still assuming 1 isnt an option)

Step-by-step explanation:

0,2,3,4,5,6,7,8

There are 8 options, 3 of which are greater than 5

3/8

3/8 = x/150

3*150 = 450

8 * x = 8x

8x = 450

450/8  = 56.25

56 times

-- Gage Millar

5 0
2 years ago
Write 350 as a product of primes. Use index notation when giving your answer
Mkey [24]

Answer:

5² x 7 x 2

Step-by-step explanation:

350

= 35 x 10

= 7 x 5 x 5 x 2

= 5² x 7 x 2

8 0
2 years ago
A rectangle has a perimeter 66 cm and length 24 cm what is its width
Elenna [48]
I think the answer is 2.75. I divided 66 and 24.
Hope this helps! Let me know if I'm right but um bad at math lol...
4 0
3 years ago
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
If John's car gets an average of 18 mpg and he fills his tank with 26.7 gallons of gas, how far can John travel on a tank of gas
Allisa [31]
480.6 miles


multiply 18 by 26.7 to get that answer
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is 10×4 thousands in place vaule
    15·2 answers
  • Question 7 is kicking my butt. One one good with percents ?
    14·2 answers
  • I recently took a test in my Algebra 1 class. This was on the test (that I most likely failed)and it said something about vertic
    5·1 answer
  • What is the Density if the Mass is 40g and the Volume is 20mL? <br> Density = ______/_______
    6·2 answers
  • Tính (1,5)4; ((-2)/3)3; (√3)5.
    8·1 answer
  • 15 minus the quotient of 50 and 10
    15·1 answer
  • What is an equation of the line that passes through the points (-6, 2) and (-6, 6)?​
    7·1 answer
  • 3^8x3^4/3^2 x 3^8 in index form
    12·1 answer
  • PLEASE HELP! a little confused
    11·1 answer
  • Evaluate the expression when a=-7 and y=4. -y+2a
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!