Answer:
<em> (n - 1)/2</em>
Step-by-step explanation:
F = (1 - 1/n) + (1 - 2/n) + (1 - 3/n) + ...(1 - n/n)
= (1 + 1 ... + 1) - (1/n + 2/n + 3/n + ...n/n)
(there are n terms of 1)
= n - (1 + 2 + 3 + ... + n)/n
= n - [n x (n + 1)/2]/n
= n - [n x (n + 1)]/[2 x n]
= n - (n+1)/2
= (2n - n - 1)/2
= (n - 1)/2
Hope this helps!
Answer:

Step-by-step explanation:
We want to find an equivalent expression for
![(\sqrt[4]{9})^{ \frac{1}{2}x}](https://tex.z-dn.net/?f=%20%28%5Csqrt%5B4%5D%7B9%7D%29%5E%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%20%20)
To find an equivalent expression, we need to apply the following property of exponents:
![{a}^{ \frac{m}{n}}=( \sqrt[n]{ {a}} )^{m}](https://tex.z-dn.net/?f=%20%7Ba%7D%5E%7B%20%5Cfrac%7Bm%7D%7Bn%7D%7D%3D%28%20%5Csqrt%5Bn%5D%7B%20%7Ba%7D%7D%20%20%29%5E%7Bm%7D%20)
We let a=9, n=4 and m=½x
Then :
![{9}^{ \frac{ \frac{1}{2}x}{4}}=( \sqrt[4]{ {9}} )^{ \frac{1}{2}x}](https://tex.z-dn.net/?f=%20%7B9%7D%5E%7B%20%5Cfrac%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%7B4%7D%7D%3D%28%20%5Csqrt%5B4%5D%7B%20%7B9%7D%7D%20%20%29%5E%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%20)
Simplify the left hand side to get:
![{9}^ {\frac{1}{8}x} =( \sqrt[4]{ {9}} )^{ \frac{1}{2}x}](https://tex.z-dn.net/?f=%7B9%7D%5E%20%7B%5Cfrac%7B1%7D%7B8%7Dx%7D%20%3D%28%20%5Csqrt%5B4%5D%7B%20%7B9%7D%7D%20%20%29%5E%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%20)
Therefore the correct answer is:

Answer:
Step-by-step explanation:
100%
Answer:
The Answer Is A
Step-by-step explanation:
Answer:
r = 5 cm
Step-by-step explanation:
A = πr²
78.53 = (3.14)r²
divide by 3.14
25 = r²
r = ±5
r = 5