1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
6

Gregor is documenting the height of pea plants each week. He has determined the function to be f(x) = 2x + 1, where x represents

time and f(x) represents the height of the plant. Which of the following options describes the restrictions of the domain (x) and range f(x) correctly?
A. Domain, nonnegative values; range, values greater than -0.5
B. Domain, nonnegative values; range, values less than -0.5
C. Domain, nonnegative values; range, values greater than 1
D. Domain, nonnegative values; range, nonnegative values
Mathematics
2 answers:
denis-greek [22]3 years ago
7 0

Let

x--------> represent the time

f(x)-------> represent the height of pea plants

we know that

f(x)=2x+1

This is a linear equation

<u>The domain</u> is the interval-------> [0,∞)

x\geq0

Because the time can not be negative

<u>The range</u> is the interval---------> [1,∞)

f(x)\geq1

Because, the minimum value of f(x) is for x=0

f(0)=2*0+1=1

therefore

<u>the answer is the option </u>

C. Domain, non negative values; range, values greater than 1

Leni [432]3 years ago
6 0
The answer would be C, because time can't be negative and the height of the plant can't go below 1
You might be interested in
Find the mode, median, mean and range for this set of data.
Lynna [10]

Answer:

Step-by-step explanation:i dont know your mom

3 0
3 years ago
Let ∠1, ∠2, and ∠3 have the following relationships.
Kaylis [27]

Answer:

sry im being Dumb im pretty sure its 180 because intersecting lines form vertical angles if those angles are acute the one in between is obtuve a like is 180 degrees

7 0
3 years ago
A climber who is 6 feet tall, casts a shadow that is 20 feet tall, at the same time that a tree casts a shadow which is 90 feet
Agata [3.3K]
The tree is about 27.3 ft. tall.
8 0
3 years ago
Read 2 more answers
PLS HELP
joja [24]

Answer:

We would need pictures of the figures first :(

5 0
3 years ago
1) Determine the discriminant of the 2nd degree equation below:
Aleksandr-060686 [28]

\LARGE{ \boxed{ \mathbb{ \color{purple}{SOLUTION:}}}}

We have, Discriminant formula for finding roots:

\large{ \boxed{ \rm{x =  \frac{  - b \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a} }}}

Here,

  • x is the root of the equation.
  • a is the coefficient of x^2
  • b is the coefficient of x
  • c is the constant term

1) Given,

3x^2 - 2x - 1

Finding the discriminant,

➝ D = b^2 - 4ac

➝ D = (-2)^2 - 4 × 3 × (-1)

➝ D = 4 - (-12)

➝ D = 4 + 12

➝ D = 16

2) Solving by using Bhaskar formula,

❒ p(x) = x^2 + 5x + 6 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5\pm  \sqrt{( - 5) {}^{2} - 4 \times 1 \times 6 }} {2 \times 1}}}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5  \pm  \sqrt{25 - 24} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 5 \pm 1}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x =  - 2 \: or  - 3}}}

❒ p(x) = x^2 + 2x + 1 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{  - 2 \pm  \sqrt{ {2}^{2}  - 4 \times 1 \times 1} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 2 \pm \sqrt{4 - 4} }{2} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - 2 \pm 0}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x =  - 1 \: or \:  - 1}}}

❒ p(x) = x^2 - x - 20 = 0

\large{ \rm{ \longrightarrow \: x =  \dfrac{ - ( - 1) \pm  \sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 20) } }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{ 1 \pm \sqrt{1 + 80} }{2} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{1 \pm 9}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x = 5 \: or \:  - 4}}}

❒ p(x) = x^2 - 3x - 4 = 0

\large{ \rm{ \longrightarrow \: x =   \dfrac{  - ( - 3) \pm \sqrt{( - 3) {}^{2} - 4 \times 1 \times ( - 4) } }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{3 \pm \sqrt{9  + 16} }{2 \times 1} }}

\large{ \rm{ \longrightarrow \: x =  \dfrac{3  \pm 5}{2} }}

So here,

\large{\boxed{ \rm{ \longrightarrow \: x = 4 \: or \:  - 1}}}

<u>━━━━━━━━━━━━━━━━━━━━</u>

5 0
3 years ago
Read 2 more answers
Other questions:
  • Christy drove 270 miles in 6 hours at a constant speed how long would it take her to drive 405 miles at the same speed ?
    9·2 answers
  • 35 in<br> 37 in<br> Find area and round to the nearest hundredth
    7·1 answer
  • Most credit cards are ___ debt
    10·2 answers
  • Which expressions are equivalent to (4⋅a)⋅2 ?
    7·1 answer
  • Find a . b if a=(2, -8) and b = (-1, 4).<br> a. -30<br> b. (1, -4)<br> c. -34<br> d. (-2, -32)
    10·1 answer
  • Help please!  I will mark brainliest answer! 
    7·2 answers
  • Does anybody now Mean, mode,Range,ext? ASAP NEED HELP!!!!!!!!!
    10·1 answer
  • Can somebody please help me? :)
    12·1 answer
  • You have worked these hours this week: 5 4/5,6 1/3,8 2/5, 4 2/3. How many hours did you work?
    10·1 answer
  • 3/14 divided by 2/7 equal
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!