Answer:
¹/₄x - 3 ≥ 2
+ 3 + 3
4(¹/₄x) ≥ 4(5)
x ≥ 20
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
Answer: Yes
Step-by-step explanation: The answer of 1400 is correct.
What I did is I found the area of the figure assuming it was a rectangle, then I subtracted the corners that were removed.
1800 - 150 - 100 - 150 = 1400
Answer:
Step-by-step explanation:
Given:
elongation, x = 0.50 in
Force, f = 9000 lb
Young modulus, E = 10,000,000 psi
Maximum Stress, Sm = 30000 psi
Length, L = 16 ft
Converting ft to in,
12 in = 1 ft
=16 × 12 = 192 in
Young modulus, E = stress/strain
Stress = force/area, A
Strain = elongation, x/Length, L
E = f × L/A × E
1 × 10^7 = stress/(0.5/16)
= 26041.7 psi
Minimum stress = 26041.7 psi
Maximum stress = 30,000 psi
Stress = force/area
Area = 9000/26041.7
= 0.3456 in^2
Stress = force/area
Area = 9000/30000
= 0.3 in^2
Using minimum area of 0.3 in^2,
A = (pi/4)(d^2)
0.3 in^2 = (pi/4)(d^2)
d = 0.618 inches
diameter, d = 0.618 inches