Answer:
\[y < = 300\]
Step-by-step explanation:
Let x = number of out-of-state students at the college
Let y = number of in-state students at the college
As per the given problem, the constraints are as follows:
\[x < = 100\] --------- (1)
\[y = 3 * x\] --------- (2)
From the given equations (2), \[ x = y/3 \]
Substituting in (1):
\[y/3 < = 100\]
Or, \[y < = 300\] which is the constraint representing the incoming students.
Usando un sistema de ecuaciones, se encuentra que
- Cada manzana cuesta $3.
- Cada pera cuesta $1.
-----------------------
- Un sistema de ecuaciones soluciona esta pergunta.
- El custo de una manzana es x.
- El custo de una pera es y.
-----------------------
- <u>Seis manzanas y 8 peras cuestan $26</u>, o sea,

- <u>Cada manzana cuesta el triple de cada pera</u>, o sea,

-----------------------
Primero, encontramos el cuesto de una pera, substituyendo la segunda en la primera ecuación.






Cada pera cuesta $1.
-----------------------
<u>Cada manzana cuesta el triple de cada pera</u>, o sea,
.
Cada manzana cuesta $3.
Se encuentra um problema similar en brainly.com/question/24646137
Answer:
C. 70 cm
Step-by-step explanation:
Split all the shapes, so, the square would be:
4 × 10 = 40
---------------------------------------------------------------------------------------------------------------
Each triangle has an area of 7.5:
7.5 × 4 = 30
---------------------------------------------------------------------------------------------------------------
30 + 40 = 70
---------------------------------------------------------------------------------------------------------------
Have a good day :)