Answer:
18. x² + x - 4
20.
or 
22. x² + 2x - 2
Step-by-step explanation:
For some reason my work was unable to be submitted so please see attachment for detailed explanation
Answer:
2.7m
Step-by-step explanation:
1.0m
0.5m
+1.2m
2.7m - answer
Answer:
The explicit formula for the given expression is
.
Step-by-step explanation:
The given sequence is
-7, -4, -1, 2, 5
The difference between two consecutive terms is same, therefore the given sequence is an arithmetic sequence.
The first term of the given AP is -7 and the common difference is

The explicit formula for an AP is

Where, a is first term, d is common difference and n is number of terms.
Substitute a=-7 and d=3 in the above equation.



Therefore the explicit formula for the given expression is
.
Answer:
1.5
Step-by-step explanation:

By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7