Answer:
1 hour and 54 minutes and ignore this stuff sjsjsbdbsj
Answer:
3x-18 = 39
3x = 57
x = 19
(3*(19))-18 = 39
57-18 = 39
3x-x+2=4
Step-by-step explanation:
hope it help
A mean is an arithmetic average of a set of observations. The amount that Jack has to earn in tips on Sunday if he wants to average $19 a day is $25.
<h3>What is Mean?</h3>
A mean is an arithmetic average of a set of observations. it is given by the formula,

As it is given that Jack makes $12 on Monday, $14 on Tuesday, $18 on Wednesday, $16 on Thursday, $26 on Friday and $22 on Saturday. And we need to know how much he should earn on Sunday, so the average is $19. Therefore, we can write,


Hence, the amount that Jack has to earn in tips on Sunday if he wants to average $19 a day is $25.
Learn more about Mean:
brainly.com/question/16967035
Answer:
65
Step-by-step explanation:
First, order the numbers in order. Then find the "middle numbers" and omit them after you have divided the number set into two equals parts. Then find the median of those number sets and then subtract.
You should get 71-6 at the end which is 65.
Answer:
Please read the complete procedure below:
Step-by-step explanation:
You have the following initial value problem:

a) The algebraic equation obtain by using the Laplace transform is:
![L[y']+2L[y]=4L[t]\\\\L[y']=sY(s)-y(0)\ \ \ \ (1)\\\\L[t]=\frac{1}{s^2}\ \ \ \ \ (2)\\\\](https://tex.z-dn.net/?f=L%5By%27%5D%2B2L%5By%5D%3D4L%5Bt%5D%5C%5C%5C%5CL%5By%27%5D%3DsY%28s%29-y%280%29%5C%20%5C%20%5C%20%5C%20%281%29%5C%5C%5C%5CL%5Bt%5D%3D%5Cfrac%7B1%7D%7Bs%5E2%7D%5C%20%5C%20%5C%20%5C%20%5C%20%282%29%5C%5C%5C%5C)
next, you replace (1) and (2):
(this is the algebraic equation)
b)
(this is the solution for Y(s))
c)
![y(t)=L^{-1}Y(s)=L^{-1}[\frac{4}{s^2(s+2)}+\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+L^{-1}[\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+8e^{-2t}](https://tex.z-dn.net/?f=y%28t%29%3DL%5E%7B-1%7DY%28s%29%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%2B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2BL%5E%7B-1%7D%5B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2B8e%5E%7B-2t%7D)
To find the inverse Laplace transform of the first term you use partial fractions:

Thus, you have:
(this is the solution to the differential equation)