1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksAgata [21]
3 years ago
12

Liz wants to buy her favorite musical group’s new cd. the cd costs $15.24, including tax. liz gives the store clerk a twenty-dol

lar bill. how much change should liz get back?
Mathematics
1 answer:
Tema [17]3 years ago
3 0
So from 20 dollars subtract this 15,24 

20,00 - 
15,24
---------
04,76   so this mean that Liz will get back $04,76 

hope this will help you 
You might be interested in
Pam wants to buy a DVD player. The original price is $50. What is the sale price? with a 90% off
qaws [65]

Answer:

5 dollars

Step-by-step explanation:

If the price is 90 % off, we will pay 100 - 90 or 10 %

Take the original price times 10 %

50 * 10 %

50 * .10

5

5 0
3 years ago
How do you solve domain and range
blsea [12.9K]
Your domain is your x and range is your y if that’s what you were asking you got to be more specific
8 0
3 years ago
Are my answers correct?
Snezhnost [94]

Answer:

20 is x ≥ 25

Step-by-step explanation:

In number 20 you put x is less than or equal to 25 ( x ≤ 25 )

It should be x is greater than or equal to 25 ( x ≥ 25 ) because it says it cannot be less than 25.

All your other answers are correct. Good job.

7 0
3 years ago
Please help me with this
Sati [7]

Answer:

x = \sqrt{11.4^2+2.6^2}\\\\

Rounded to the nearest hundredths: 11.69.

Step-by-step explanation:

I would use the Pythagorean theorem for this problem.

The difference between the highest point and the lowest point of AD is 9.8-7.2 = 2.6, so that would be the height of the triangle. The length/base of the triangle would be 11.4.

Now, just solve using Pythagorean's theorem:

x = \sqrt{11.4^2+2.6^2}\\\\

Rounded to the nearest hundredths: 11.69.

I hope this helped you.

5 0
3 years ago
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y
\\
\\ \indent xdy = \left ( y^2 - y \right )dx
\\
\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}
\\
\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} 
\\
\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}
\\
\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} 
\\
\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B
\\
\\ \indent \Rightarrow (A+B)y - B = 0y + 1
\\
\\ \indent \Rightarrow \begin{cases}
 A + B = 0
& \text{(3)}\\-B = 1
 & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} 
\\
\\ \indent \indent \indent \indent = \ln (y-1) - \ln y
\\
\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1
\\
\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2
\\
\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x
\\
\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}
\\
\\ \indent  1 - \frac{1}{y} = Cx
\\
\\ \indent \frac{1}{y} = 1 - Cx
\\
\\ \indent \boxed{y = \frac{1}{1 - Cx}}
       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1



Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}
\\
\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 16 = \frac{1}{1 - C(16)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 16C}
\\
\\ \indent 16(1 - 16C) = 1
\\ \indent 16 - 256C = 1
\\ \indent - 256C = -15
\\ \indent \boxed{C = \frac{15}{256}}




By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}
\\
\\ \indent y = \frac{1}{1 - \frac{15}{256}x} 
\\ 
\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}
\\
\\
\\ \indent \boxed{y = \frac{256}{256 - 15x}}





This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} 
\\ 
\\ \indent 16 = \frac{1}{1 - C(4)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 4C} 
\\ 
\\ \indent 16(1 - 4C) = 1 
\\ \indent 16 - 64C = 1 
\\ \indent - 64C = -15 
\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
Other questions:
  • Which diagram shows the medians of a triangle?
    10·2 answers
  • Suppose that the price of a gallon of premium gasoline rose from $1.85 last week to $2.08 this week. What is the percentage chan
    9·1 answer
  • Help solving question 5 please.
    12·1 answer
  • If f(x)=-2x+8 determine the value of y for each x value 7,8,9
    14·1 answer
  • First twelve mulitples of 4
    15·2 answers
  • Please help!!! Keep in mind the triangles aren’t to scale!!!
    9·1 answer
  • Question 1 (1 point)
    8·1 answer
  • Find the measure of each numbered angle for each figure
    12·1 answer
  • A Redbox movie costs $1.50. Redbox charges $1 per day for late movies. If Henry's movie is 3 weeks late, how much money does he
    13·1 answer
  • Which polynomial function gets larger and larger in the negative direction as x gets larger and larger in the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!