Answer:
30√3 ≈ 51.96 miles
Step-by-step explanation:
The distance between the two ships can be found using the Law of Cosines, or using your knowledge of the side relationships in special triangles.
__
Each ship is traveling at 10 mph, so after 3 hours will have traveled 30 miles.
The triangle OS1S2 formed by the harbor and the two ship locations is an isosceles triangle with base angles of 30°. Each half of OS1S2 is a 30-60-90 triangle whose longer leg is √3 times half the hypotenuse. The sum of those two "longer legs" is the distance between the ships.
The distance between ships is 2×15√3 = 30√3 ≈ 51.96 miles.
_____
<em>Additional comment</em>
If you prefer to use the Law of Cosines, you are looking for the length of the side opposite the 120° angle in a triangle with sides of 30 miles.
c² = 30² +30² -2·30·30·cos(120°) = 30²(2-2·(-0.5)) = 3·30²
c = 30√3 . . . . . take the square root (miles)
F = 9. pretty easy solution, just whatever you do to one side u do to the other.
Given parameters:
Midpoint of AB = M(3, -1)
Coordinates of A = (5,1)
Unknown:
Coordinates of B = ?
Solution:
To find the mid point of any line, we use the expression below;
and 
where
and
= coordinates of the mid points = 3 and -1
x₁ = 5 and y₁ = 1
x₂ = ? and y₂ = ?
Now let us input the variables and solve,
3 =
and -1 = 
5 + x₂ = 6 -2 = 1 + y₂
x₂ = 1 y₂ = -2 -1 = -3
The coordinates of B = 1, -3
Find a basis for the column space and rank of the matrix ((-2,-2,-4,1),(7,-3,14,-6),(2,-2,4,-2)(2,-6,4,-3))
Novosadov [1.4K]
Answer:
- B=\{\left[\begin{array}{c}-2\\-2\\-4\\1\end{array}\right], \left[\begin{array}{c}7\\-3\\14&-6\end{array}\right], \left[\begin{array}{c}2\\-2\\4\\-2\end{array}\right] \}[/tex] is a basis for the column space of A.
- The rank of A is 3.
Step-by-step explanation:
Remember, the column space of A is the generating subspace by the columns of A and if R is a echelon form of the matrix A then the column vectors of A, corresponding to the columns of R with pivots, form a basis for the space column. The rank of the matrix is the number of pivots in one of its echelon forms.
Let
the matrix of the problem.
Using row operations we obtain a echelon form of the matrix A, that is
![R=\left[\begin{array}{cccc}1&-6&-2&-3\\0&9&2&0\\0&0&-8&-21\\0&0&0&0\end{array}\right]](https://tex.z-dn.net/?f=R%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-6%26-2%26-3%5C%5C0%269%262%260%5C%5C0%260%26-8%26-21%5C%5C0%260%260%260%5Cend%7Barray%7D%5Cright%5D)
Since columns 1,2 and 3 of R have pivots, then a basis for the column space of A is
.
And the rank of A is 3 because are three pivots in R.