Aprox 14.663
now i need to fill this to 20 letters
hey how ya doin
i thing this is enough
Answer:
i) 66
ii) 536
Step-by-step explanation:
Check attachement(s) for solution.
- Attachment - 1: Solution (i)
- Attachment - 2: Solution (ii)
4 hundreds = 4 100s = 4(100) = 400
400 is another way for writing four hundreds.
Hope this helps!
Data: (Cylinder)
h (height) = 8 cm
r (radius) = 5 cm
Adopting:
![\pi \approx 3.14](https://tex.z-dn.net/?f=%20%5Cpi%20%5Capprox%203.14)
V (volume) = ?
Solving:(<span>Cylinder volume)
</span>
![V = h* \pi *r^2](https://tex.z-dn.net/?f=V%20%3D%20h%2A%20%5Cpi%20%2Ar%5E2)
![V = 8*3.14*5^2](https://tex.z-dn.net/?f=V%20%3D%208%2A3.14%2A5%5E2)
![V = 8*3.14*25](https://tex.z-dn.net/?f=V%20%3D%208%2A3.14%2A25)
![\boxed{ V_{cylinder} = 628\:cm^3}](https://tex.z-dn.net/?f=%5Cboxed%7B%20V_%7Bcylinder%7D%20%20%3D%20628%5C%3Acm%5E3%7D)
<span>Note: Now, let's find the volume of a hemisphere.
</span>
Data: (hemisphere volume)
V (volume) = ?
r (radius) = 5 cm
Adopting:
![\pi \approx 3.14](https://tex.z-dn.net/?f=%20%5Cpi%20%5Capprox%203.14)
If: We know that the volume of a sphere is
![V = 4 * \pi * \frac{r^3}{3}](https://tex.z-dn.net/?f=V%20%3D%204%20%2A%20%5Cpi%20%2A%20%20%5Cfrac%7Br%5E3%7D%7B3%7D%20)
, but we have a hemisphere, so the formula will be half the volume of the hemisphere
![V = \frac{1}{2} * 4 * \pi * \frac{r^3}{3} ](https://tex.z-dn.net/?f=V%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%204%20%2A%20%5Cpi%20%2A%20%20%5Cfrac%7Br%5E3%7D%7B3%7D%20%0A)
Formula: (<span>Volume of the hemisphere)
</span>
![V = \frac{1}{2} * 4 * \pi * \frac{r^3}{3}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%204%20%2A%20%5Cpi%20%2A%20%5Cfrac%7Br%5E3%7D%7B3%7D%20)
Solving:
![V = \frac{1}{2} * 4 * \pi * \frac{r^3}{3}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%204%20%2A%20%5Cpi%20%2A%20%5Cfrac%7Br%5E3%7D%7B3%7D%20)
![V = \frac{1}{2} * 4 * 3.14 * \frac{5^3}{3}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%204%20%2A%203.14%20%2A%20%5Cfrac%7B5%5E3%7D%7B3%7D)
![V = \frac{1}{2} * 4 * 3.14 * \frac{125}{3}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%204%20%2A%203.14%20%2A%20%5Cfrac%7B125%7D%7B3%7D)
![V = \frac{1570}{6}](https://tex.z-dn.net/?f=V%20%3D%20%20%5Cfrac%7B1570%7D%7B6%7D%20)
![\boxed{V_{hemisphere}\approx 261.6\:cm^3}](https://tex.z-dn.net/?f=%5Cboxed%7BV_%7Bhemisphere%7D%5Capprox%20261.6%5C%3Acm%5E3%7D)
<span>Now, to find the total volume of the figure, add the values: (cylinder volume + hemisphere volume)
</span>
Volume of the figure = cylinder volume + hemisphere volume
Volume of the figure = 628 cm³ + 261.6 cm³